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(ABSTRACT)

Layerwise finite element analyses of geodesically stiffened cylindrical shells axe presented. The

layerwise laminate theory of Reddy (LWTR) is developed and adapted to circular cylindrical

shells. The Ritz variational method is used to develop an analytical approach for studying the

buckling of simply supported geodesically stiffened shells with discrete stiffeners. This method

utilizes a Lagrange multiplier technique to attach the stiffeners to the shell. The development of

the layerwise shells couples a one-dimensional finite element through the thickness with a Navier

solution that satisfies the boundary conditions. The buckling results from the Ritz discrete analyt-

ical method are compared with smeared buckling results and with NASA Testbed finite element

results. The development of layerwise shell and beam finite elements is presented and these ele-

ments are used to perform the displacement field, stress, and first-ply failure analyses. The layer-

wise shell elements are used to model the shell skin and the layerwise beam elements are used to

model the stiffeners. This arrangement allows the beam stiffeners to be assembled directly into the

global stiffness matrix. A series of analytical studies are made to compare the response of geodes-

ically stiffened shells as a function of loading, shell geometry, shell radii, shell laminate thickness,

stiffener height, and geometric nonlinearity. Comparisons of the structural response of geodesi-

cally stiffened shells, axial and ring stiffened shells, and unstiffened shells are provided. In addi-

tion, interlaminar stress results near the stiffener intersection are presented. First-ply failure

analyses for geodesically stiffened shells utilizing the Tsai-Wu failure criterion axe presented for a

few selected cases.

ii





Acknowledgements

This research is sponsored in part by NASA Grant NAG-l-1085 through the Aircraft Structures

Branch at NASA-Langley Research Center. The authors would like to thank the NASA Technical

Monitor Dr. James H. Starnes, Jr., for his advice and support. Also, recognition and thanks are

given to Dr. J. N. Reddy who guided the first author through the first several years of his doctoral

work and helped to initiate this research.





Table of Contents

Introduction ...................................................... 1

1.0 Background .................................................. 1

1.2 Literature Review ............................................. 5

1,2.1 Shell Theories and Finite Element Applications ...................... 5

1.2.2 Structural Analysis of Stiffened Shells ............................. 8

1.2.3 Failure Mechanisms ......................................... 15

1.3 Present Work ............................................... 18

Governing Equations e*lteltee JelmoolJom*oiQoeeoolotltlotoettlalloto 20

2.1 Introduction ................................................ 20

2.2 Displacements and Strains for Laminated Shells ...................... 21

2.3 Displacements and Strains for Laminated Beams ..................... 24

2.4 Variational Formulation for Laminated Shells ....................... 28

2.5 Variational Formulation for Laminated Beams ....................... 37

2.6 Failure Equations ............................................ 40

Ritz Buckling Method .............................................. 42

3.1 Introduction ................................................ 42

3.2 Euler-Bernoulli Beam Stiffeners .................................. ,43

3.3 Lagrange Multiplier Method .................................... 45

3.4 Stiffened Shell System ......................................... 47

Table of Contents iv





3.5 Buckling Solutions and Equations ................................ 49

3.6 Constraint Equations .......................................... 52

3.7 Shell/Stiffener Load Distribution ................................. 56

3.7.1 Introduction ............................................... 56

3.7.2 Shell Constitutive Relations .................................... 57

3.7.3 Axial Stiffener Constitutive Relations ............................ 60

3.7.4 Ring Stiffener Constitutive Relations ............................. 63

3.7,5 Geodesic Stiffener Constitutive Relations .......................... 68

3.7.6 Skin/Stiffener System Constitutive Equations ....................... 73

3.7.7 Loading Conditions .......................................... 76

3.7.7.1 Case 1 - Axial Compression (Applied Nx) ........................ 76

3.7.7.2 Case 2 - Pressure Loading (Applied Ny) ......................... 78

3.7.7.3 Case 3 - Shear Load (Applied Nxy) ............................. 80

3.7.7.4 Case 4 - Applied End Shortening .............................. 81

3.8 Governing Equations and Final Form ............................. 82

Finite Element Formulation .......................................... 85

4.1 Introduction ................................................ 85

4.2 Layerwise Shell Finite Element Formulation ......................... 86

4,3 Layerwise Beam Finite Element Formulation ........................ 89

4.4 Assembly and Nonlinear Analysis ................................ 92

4.5 Beam Element Stiffness Transformations ........................... 97

4.6 lnterlaminar Stress Calculation ................................. 100

4.7 Finite Element Verification Analyses ............................. 102

4,7,1 Introduction .............................................. 102

4.7.2 Unstiffened Plates and Shells .................................. 102

Table of Contents v





4,7.3 Beam Structures ........................................... 111

4.7.4 Stiffened Structures ......................................... 117

Results ........................................................ 128

5.1 Ritz Buckling Results ......................................... 128

52 LWTR/Testbed Finite Element Stress Analysis Comparison ............ 158

5.3 Displacements and Interlaminar Stresses in Geodesically Stiffened Shells ... 168

5.4 Displacement Field in Geodesically Stiffened Shells ................... 177

5.5 Detailed Stress Study ......................................... 194

5.5.1 In-Plane Stress Study ....................................... 195

5.5.2 Interlaminar Normal Stress Study .............................. 202

5.5.3 lnterlaminar Shear Stress Study ................................ 216

5.6 First-Ply Failure Analysis ...................................... 227

Conclusions and Recommendations .................................... 234

6.1 Summary and Conclusions ..................................... 234

6.2 Recommendations ........................................... 238

References ..................................................... 241

Nonlinear Variational Statement for Laminated Shells ...................... 255

Nonlinear Variational Statement ................................... 256

Ritz Stiffness and Mass Terms ...................................... 258

Stiffness Terms ................................................ 259

Mass Terms .................................................. 262

Table of Contents vi





Finite Element Stiffness Terms ...................................... 263

C.I Layerwise Shell Element Direct Stiffness Terms ..................... 264

C.2 Layerwise Shell Element Tangent Stiffness Terms .................... 268

C.3 Layer'wise Beam Element Direct Stiffness Terms ..................... 271

C.g Layerwise Beam Element Tangent Stiffness Terms ................... 272

C.5 Computation of" Higher Order Derivatives ......................... 273

Table of Contents vii





List of Illustrations

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

Figure 11.

Figure 12.

Figure 13.

Figure 14.

Figure 15.

Figure 16.

Figure 17.

Figure 18.

Geodesically stiffened circular cylindrical shell ..................... 3

Cylindrical shell geometry and coordinate system ................. 25

Variables and interpolation functions for the shell layers ............ 26

Coordinate systems for the stiffeners: (a) axial stiffeners; (b) ring
stiffeners; and (c) geodesic stiffeners ........................... 29

Orthogonally stiffened circular cylindrical shell with axial and ring
stiffeners ............................................... 30

Description of the radius of curvature for geodesic stiffeners ......... 31

Geodesically stiffened circular cylindrical shell showing the Lagrange
constraint points ......................................... 50

Geometry ofan N-layered shell laminate ....................... 61

Axially stiffened cylindrical shell and unit cell for load distribution anal-
ysis: (a) stiffened cylindrical shell; b) unit axial cell ................ 64

Ring stiffened cylindrical shell and unit cell for load distribution analysis:
(a) stiffened cylindrical shell; b) unit ring cell ..................... 67

Geodesically stiffened cylindrical shell and unit cell for load distribution
analysis: (a) stiffened cylindrical shell; b) unit geodesic cell ........... 74

Geometry of the finite element model: a) shell element; b) beam element. 87

Node numbering and coordinates for Linear, Serendipity, and Lagrange
shell f'mite elements ....................................... 90

Node numbering and coordinates for Linear, Quadratic, and Cubic beam
finite elements ........................................... 93

Newton-Raphson method of a one-dimensional problem with tangent
stiffness matrix at each iteration .............................. 96

Representation of the beam displacements (u', v', w') to shell transfor-
mation shell displacements (u, v, w) ........................... 99

A clamped cylindrical shell subjected to internal pressure .......... 103

An isotropic cylindrical shell roof under self-weight ............... 106

List of Illustrations viii





Figure 19.

Figure 20.

Figure 21,

Figure 22.

Figure 23.

Figure 24.

Figure 25.

Figure 26.

Figure 27.

Figure 28.

Figure 29.

Figure 30.

Figure 31.

Figure 32.

Figure 33.

Figure 34.

Figure 35.

Figure 36.

Axial deflection at the support of an isotropic cylindrical shell roof un-
der self-weight .......................................... 107

Transverse deflection at the support of an isotropic cylindrical shell roof
under self-weight ........................................ 108

Simply supported orthotropic cylindrical roof. .................. 109

Simply supported [0/90] cylindrical roof. ...................... 110

Simply supported [0/90/0] square plate subjected to a uniformly distrib-
uted load .............................................. 112

Through-the-thickness distribution of the in-plane normal stress _ for
a simply supported, [0/90/0] laminated square plate under uniform load,
(a,'h = 10) ............................................. 113

Through-the-thickness distribution of the transverse shear stress _yz for
a simply supported, [0/90/0] laminated square plate under uniform load,
(a/h = 10) ............................................. 114

Through-the-thickness distribution of the transverse shear stress _,_ for
a simply supported, [0/90/01 laminated square plate under uniform load,
(a/h = 10) ............................................. 115

Through-the-thickness distribution of the transverse normal stress _,z
for a simply supported, [0/90/01 laminated square plate under uniform
load, (a/h = 10) ......................................... 116

Cantilever beam subjected to two different loading conditions: a) applied
end load; b) uniformly distributed load ........................ 118

Large deflection of a cantilever beam under a uniform load (E = 1.2 x
104 psi, v = 0.2, L -- 10 in.) ................................ 120

Cantilever stiffened plate subjected to an end load ............... 122

Cantilever stiffened plate with symmetric stiffeners ............... 124

A square plate resting on elastic edge beams .................... 126

GeodesicaUy stiffened panel for verification of the LWTR analysis: a)
panel geometry; b) finite element mesh ........................ 133

Axial buckling for a 24 axial stiffener shell model ([ -45/45/90/0]s layup;
R = 85", L = 100"; 1.0" x 0.2" stiffeners) ...................... 138

Buckling pressure for a 25 ring stiffener shell model ([ -45/45/90/0]s
layup; R = 85", L -- 100"; 1.0" x 0.2" stiffeners) ................. 141

Geodesically stiffened shell configurations ...................... 143

List of Illustrations ix





Figure 37.

Figure 38.

Figure 39.

Figure 40.

Figure 41.

Figure 42.

Figure 43,

Figure 44.

Figure 45,

Figure 46,

Figure 47.

Figure 48.

Figure 49.

Figure 50.

Figure 51.

Finite element mesh used for the geodesic buckling analysis (unit cell
with 20x20 mesh) ........................................ 144

Axial buckling results for a 2x12 geodesic shell model ([ -45/45/90/0]s
layup; R = 85", L -- 100"; 1.0" x 0.2" stiffeners) ................. 149

Axial buckling for a 24 axial stiffener shell model ([0/90/90/0] layup; R
-- 85", L -- 100"; 1.0" x 0.2" stiffeners) ........................ 153

Buckling pressure for a 25 ring stiffener shell model ([0/90/90/0] layup;
R = 85", L = 100"; 1.0'" x 0.2" stiffeners) ...................... 156

Axial buckling results for a lx12 geodesic shell model ([0/90/90/0] layup;
R = 85", L = 100"; 1.0" x 0.2" stiffeners) ...................... 163

Unit cell finite element mesh and boundary conditions for the Testbed

stress analysis (256 elements) ............................... 169

Unit cell finite element mesh and boundary conditions for the LWTR
stress analysis (256 elements) ............................... 170

LWTR and Testbed lx12 geodesic shell axial stresses for I'0/90/0] lami-

nate: a) bottom 0° ply; b) 900 ply; c) top 0° ply (x = L/2) .......... 171

LWTR and Testbed lx12 geodesic shell axial stresses for bottom layers

of [45/- 45/45/- 45] laminate: a) bottom 450 ply; b) bottom -450 ply
(x = L/2) .............................................. 172

LWTR and Testbed lx12 geodesic shell axial stresses for top layers of
[45/- 45/45/- 45] laminate: a) top 450 ply; b) top -450 ply (x -- L/2). 173

LWTR and Testbed lx12 geodesic shell axial stresses for bottom layers
of [60/- 60/0/- 60/60] laminate: a) bottom 600 ply; b) bottom -600 ply
(x = L/2) .............................................. 174

LWTR and Testbed lx12 geodesic shell axial stresses for 0 ° layer of
[60] - 6010] - 60/60] laminate (x = L/2) ...................... 175

LWTR and Testbed lx12 geodesic shell axial stresses for top layers of
[60/- 60[0[ - 60/60] laminate: a) top 600 ply; b) top -600 ply (x = L/2). 176

Nondimensional transverse displacements for a Ix12 geodesically stiff-

ened shell as a function of the laminate stacking sequence under
compressive loading (R-- 85", L= 100") ........................ 179

Nondimensional transverse displacements for geodesically stiffened

shells as a function of the stiffener orientation: a) changing cell geom-

etry; b) changing cell length ................................ 181

List of Illustrations x





Figure 52.

Figure 53.

Figure 54.

Figure 55.

Figure 56.

Figure 57.

Figure 58.

Figure 59.

Figure 60.

Figure 61.

Figure 62.

Figure 63.

Figure 64.

Figure 65.

Figure 66.

Nondimensional transverse displacements for geodesically stiffened
shells as a function of the stiffener height: a) compressive loading; b)
combined loading ........................................ 183

Nondimensional transverse displacements for geodesically stiffened
shells as a function of the shell laminate thickness: a) compressive load-

ing; b) combined loading .................................. 185

Nondimensional transverse displacements for geodesically stiffened
shclls for linear and geometrically nonlinear analyses: a) compressive
loading; b) combined loading ............................... 186

Nondimensional transverse displacements for geodesically stiffened
shells as a function of the shell radius: a) compressive loading; b) com-

bined loading ........................................... 188

Nondimensional transverse displacements for geodesically stiffened,

axial/ring stiffened, unstiffened shells: a) pure compressive; b) combined
loading ................................................ 190

Unit cell finite element mesh and boundary conditions for the LWTR
stress analysis of the axial and ring stiffened shell (256 elements) ..... 191

Nondimensional transverse displacements for geodesically stiffened
shells under combined loading: a) laminate thickness = 0.30"; b) lami-
nate thickness = 0.15" and 0.075". ........................... 193

Surface plot of_,_, for the inner layer of a [0/90/0] lx12 geodesically
stiffened shell under compressive loading ....................... 197

Surface plot of_, for the outer layer of a [0/90/0] lx12 geodesically
stiffened shell under compressive loading ....................... 198

Surface plot of_,_ for the inner layer of a [0/90/0] lx12 geodesically
stiffened shell under combined loading ........................ 199

Surface plot of_x_ for the outer layer of a [0/9010] lx12 geodesically
stiffened shell under combined loading ........................ 200

Surface plot of_ for the inner layer of a [0/90/0] lx12 geodesically
stiffened shell under combined loading ........................ 201

Surface plot of_,z for the outer layer of a [0/90/0] lx12 geodesically
stiffened shell under compressive loading ....................... 203

Surface plot of_,, for the outer layer of a [0/90/0] lx12 geodesically
stiffened shell under combined loading ........................ 204

Through-the-thickness distribution of_zz for Glxl2 shell near the
stiffener intersection for various shell laminates under combined loading. 206

List oFIllustrations xi





Figure 67.

Figure 68.

Figure 69.

Figure 70.

Figure 71.

Figure 72.

Figure 73.

Figure 74.

Figure 75.

Figure 76.

Figure 77.

Figure 78.

Figure 79.

Figure 80.

Figure 81.

Through-the-thickness distribution of_, for G l xl 2 shell near the

stiffener intersection for linear and geometrically nonlinear analyses un-
der combined loading ..................................... 207

Through-the-thickness distribution of _,, for G l xi2 shell near the

stiffener intersection for varying stiffener heights under combined load-
ing ................................................... 209

Through-the-thickness distribution of_'_ for Glxl2 shell near the
stiffener intersection for varying the cell geometry under combined
loading ................................................ 210

Through-the-thickness distribution of_ for Glxl2 shell near the
stiffener intersection for increasing shell radii under combined loading. 212

Through-the-thickness distribution of_, for Glxl2 shell near the
stiffener intersection for varying shell laminate thickness under combined
loading ................................................ 213

Through-the-thickness distribution of _,_ for G I xl 2 stiffened, axial/ring
stiffened, and unstiffened shells under combined loading ........... 215

Surface plot of_ for the outer layer of a [0/90/0] lx12 geodesically
stiffened shell under compressive loading ....................... 218

Surface plot of_, for the outer layer of a [0]9010] lx12 geodesically
stiffened shell under combined loading ........................ 219

Through-the-thickness distribution of_, for G l xl 2 shell at the critical
region for various shell laminates under combined loading .......... 220

Through-the-thickness distribution of_z for Glxl2 shell at the critical
region for linear and geometrically nonlinear analyses under combined
loading ................................................ 221

Through-the-thickness distribution of_ for G Ix12 shell at the critical
region for changing cell geometry under combined loading .......... 223

Through-the-thickness distribution of _x, for G lxl 2 shell at the critical
region for varying shell laminate thickness under combined loading. .. 224

Through-the-thickness distribution of W,, for G lxl2 shell at the critical
region for increasing shell radii under combined loading ............ 226

Through-the-thickness distribution of _,z for G lxl 2 stiffened, axial/ring
stiffened, and unstiffened shells under combined loading ........... 228

Location of the first-ply failure in the layerwise finite element model.. 233

List of Illustrations xii





List of Tables

Table 1,

Table 2.

Table 3.

Table 4.

Table 5.

Table 6.

Table 7.

Table 8.

Table 9.

Table 10.

Table 11.

Table 12.

Table 13.

Table 14.

Comparison of the Center Deflection of a Pressurized Clamped, Cylin-
drical Shell .............................................. 104

Linear Results for a Clamped Beam Subjected to an Applied End Load
and to a Uniformly Distributed Load (E = 1.2 x 104 , v = 0.2, L = 10
in.) ................................................... 119

Transverse Deflection of an Eccentrically Stiffened Plate ........... 123

Transverse Deflection of a Cantilever Stiffened Plate with Symmetric
Stiffeners ............................................... 125

Transverse Deflection of an Elastically Supported Plate Subjected to a
Uniformly Distributed Load ................................. 127

Unstiffened Buckling Results ................................ 131

Material Properties Used in the Stiffened Buckling and Finite Element
Analyses ............................................... 132

Analysis of [ -45/45/90/0]s 0.2" Thick Plate with Geodesic Stiffeners
Subjected to Axial Compression N_ (Lx = 80", Ly = 28", 12 Stiffeners). 134

Analysis of [ -45/45/90/0]s 0.2" Thick Circular Cylindrical Shell with
Axial Stiffeners Subjected to Axial Compression (R = 85", L-- 100") -
Jones Smeared/LWTR Discrete .............................. 136

Analysis of [ -45/45/90/0]s 0.2" Thick Circular Cylindrical Shell with
Axial Stiffeners Subjected to Axial Compression (R-- 85", L = 100") -
Reddy Smeared/LWTR Discrete .............................. 137

Analysis of [ -45/45/90/0]s 0.2" Thick Circular Cylindrical Shell with
Ring Stiffeners Subjected to Lateral Pressure (R = 85", L = 100") - Jones
Smeared/LWTR Discrete ................................... 139

Analysis of [ -45/45/90/0]s 0.2" Thick Circular Cylindrical Shell with
Ring Stiffeners Subjected to Lateral Pressure (R= 85", L = I00") - Reddy
Smeared/LWTR Discrete ................................... 140

Analysis of [ -45/45/90/0]s 0.2" Thick Circular Cylindrical Shell with
Geodesic Stiffeners Subjected to Axial Compression (R-- 85", L= 100",
lx12 Geodesic Shell Model) ................................. 145

Analysis of [ -45/45/90/0]s 0.2" Thick Circular Cylindrical Shell with
Geodesic Stiffeners Subjected to Axial Compression (R= 85", L = 100",
lx16 Geodesic Shell Model) ................................. 146

List of Tables xiii





Table 15. Analysis of [ -45/45/90/0]s 0,2" Thick Circular Cylindrical Shell with
Geodesic Stiffeners Subjected to Axial Compression (R= 85", L = 100"',
2x12 Geodesic Shell Model) ................................. 147

Table 16. Analysis of [ -45/45/90/0]s 0.2" Thick Circular Cylindrical Shell with
Geodesic Stiffeners Subjected to Axial Compression (R= 85", L = 100",
2x16 Geodesic Shell Model) ................................. 148

Table 17. Analysis of [0/90/90/0] 0.2" Thick Circular Cylindrical Shell with Axial
Stiffeners Subjected to Axial Compression (R= 85", L = 100") - Jones
Smeared/LWTR Discrete ................................... 151

Table 18. Analysis of [0/90/90/0] 0.2" Thick Circular Cylindrical Shell with Axial
Stiffeners Subjected to Axial Compression (R = 85", L = 100") - Reddy
Smeared/LWTR Discrete ................................... 152

Table 19. Analysis of [0/90/90/0] 0.2" Thick Circular Cylindrical Shell with Ring
Stiffeners Subjected to Lateral Pressure (R-- 85", L = 100") - Jones
Smeared/LWTR Discrete ................................... 154

Table 20. Analysis of [0/90/90/0] 0.2" Thick Circular Cylindrical Shell with Ring
Stiffeners Subjected to Lateral Pressure (R- 85", L-- 100 M)- Reddy
Smeared/LWTR Discrete ................................... 155

Table 21. Analysis of [0/90/90/0] 0.2" Thick Circular Cylindrical Shell with
Geodesic Stiffeners Subjected to Axial Compression (R---- 85", L = 100",
lxl2 Geodesic Shell Model) ................................. 159

Table 22. Analysis of [0/90/90/0] 0.2" Thick Circular Cylindrical Shell with
Geodesic Stiffeners Subjected to Axial Compression (R= 85", L--- 100",
lx16 Geodesic Shell Model) ................................. 160

Table 23. Analysis of [0/90/90/0] 0.2" Thick Circular Cylindrical Shell with
Geodesic Stiffeners Subjected to Axial Compression (R- 85", L = I00",
2x12 Geodesic Shell Model) ................................. 161

Table 24. Analysis of [0/90/90/0] 0.2" Thick Circular Cylindrical Shell with
Geodesic Stiffeners Subjected to Axial Compression (R-- 85", L = 100",
2x16 Geodesic Shell Model) ................................. 162

Table 25. Analysis of [0/90/90/0] 0.2" Thick Circular Cylindrical Shell with
Geodesic Stiffeners Subjected to Lateral Pressure (R= 85", L--- 100", lx12
Geodesic Shell Model) ..................................... 164

Table 26. Analysis of [ -45/45/90/0]s 0.2" Thick Circular Cylindrical Shell with
Geodesic Stiffeners Subjected to Lateral Pressure (R= 85", L- 100", lx12
Geodesic Shell Model) ..................................... 165

Table 27. Comparison of First-Ply Failure and Buckling Loads for Geodesically

Stiffened [0/90/0] Shells .................................... 231

List of Tables xiv





Table 28. First-Ply Failure Results for Geodesically Stiffened and Unstiffened 0.Y'
Thick Shells Subjected to l ligh Pressures ....................... 232

List of Tables xv





Chapter 1

Introduction

1.0 Background

Laminated composite shell structures have found varied applications in complicated

aerospace structural systems. This is due primarily to the advantageous properties of

composite materials such as high strength-to-weight and stiffness-to-weight ratios for

weight sensitive applications. Additionally, composite structures have a high fatigue life,

corrosion resistance, low fabrication cost, and are tailorable to the loading environment.

Aerospace applications using composite structures are almost limitless, but often require

the use of sophisticated analyses to determine the response behavior to external loads.

This is because laminated composite materials consist of two or more layers that are

bonded together to achieve desired structural properties. Material properties of lami-

nated composites are discontinuous through the thickness because of the different ma-

terial layers in the laminate. Thus, the analysis of composite structures is quite

complicated due to material discontinuities across the laminate interfaces, bending-
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stretching coupling in the laminate, and the geometrically nonlinear effects. Traditional

analysis methods applied to isotropic materials cannot be applied directly to composite

materials.

As new applications of composite structures evolve, so also the analytical techniques to

study these applications must also evolve. Existing metal aircraft design methods permit

the skin panels of some structural components to buckle under various loading condi-

tions. Hence, these structures are designed to have postbuckling strength. Before com-

posite structural components can be designed with similar buckling response, their

strength limits and failure characteristics must be well understood [1,21. Grid-stiffening

concepts based on new, automated manufacturing methods such as filament winding

where the co-curing of stiffeners and skin is achieved hold great potential for cost

savings. Additional applications of stiffened shells may be found in aircraft fuselages,

rocket motor cases, oil platform supports, grain silos, and submarine hulls.

Accurate design analysis of stiffened circular cylindrical composite shells is of great im-

portance in the aerospace industry as it relates to aircraft fuselage design. The objective

of this study will be to concentrate on the analysis of geodesically stiffened cylindrical

composite shells subjected to compressive loads. The analysis will include a study of the

stiffened shell buckling and stress analyses. See Figure 1 for a description of the

geodesically stiffened shell system. Most previous analyses of stiffened composite shells

have utilized either a smeared stiffener approach or a linear f'mite element analysis to

determine the buckling loads. Although few, nonlinear analyses of stiffened shells are

typically performed using the finite element method. Analysis of stiffened composite

shells must include the failure characteristics of the shell structure including general in-

stability, local stresses, interlaminar stresses, and failure analysis.
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Traditionally, in order to capture the localized effects in laminated composite shells a

three-dimensional (3-D) finite element analysis must be used. Further, a fully nonlinear

3-D finite element analysis must be performed to characterize the structural response in

the postbuckling regime. Unfortunately, if a laminated composite shell is modeled with

3-D elements an excessively refined mesh must be used because the individual lamina

thickness dictates the aspect ratio of the elements. The aspect ratio of the elements must

be kept reasonable to avoid shear locking. Even in localized high stress regions a 3-D

analysis will be computationally intensive and expensive.

The motivation of" this research is to develop an accurate analytical methodology for the

study of stiffened circular laminated composite shells without applying a costly nonlinear

3=D analysis, The analysis should be accurate in the nonlinear region and provide for

any localized high stress regions, The interlaminar stresses near the stiffener intersections

of" stiffened structures is of interest to shell design engineers. Moreover, the effects of

these interlaminar stresses on the structural integrity of` stiffened shells has not been de-

termined. The literature review in the next section provides a background for this study.
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1.2 Literature Review

The purpose or this literature review is to present the current state of analysis of stiffened

composite cylindrical shells. Also, included are discussions of shell theories, finite ele-

ment methods, discrete stiffener approaches, and failure mechanisms in composite ma-

terials. This should provide sufficient background for the detailed theoretical and

numerical work which follows.

1.2.1 Shell Theories and Finite Element Applications

The first classical theory of shells was proposed by Love [3] in 1888. The basic premise

of Love's paper is the Kixchhoff-Lov¢ theory in which straight lines normal to the

undeformed middle surface remain straight, inextensibl¢, and normal to the deformed

middle surface. As a result, the transverse normal strains are assumed to be zero and

the transverse shear deformations are neglected. Love's theory can be applied to thin

shells where the shell thickness is small compared to the least radius of curvature. An

improvement to Love's work was made by Sanders [4] when he presented a theory to

remove the strains for small rigid body rotations which are erroneously predicted by

Love's theory. The thin shell approximations of Love requires that the thickness of the

shell is small compared with the nominal radius of curvature. Donnell [5] removed the

thin shell approximation of Love by developing a theory for shallow shells. Reissner [6]

and Mindlin [7] each developed shear deformation theories for plates and Reissner

[8,9,10] extended the theory to include transverse shear deformation in shells. Surveys
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of classical linear elastic shell theories can be found in the works of Naghdi [11], Bert

[12], Krauss [13], and Fltigge [14].

The use of composite shell structures has forced the development of appropriate shell

theories that can accurately account for the effects of bending-stretching coupling, shear

deformations, and transverse normal strains. Ambartsumyan [15,16] developed the first

analysis that incorporated bending-stretching coupling. Ambartsumyan's work dealt

with orthotropic shells rather than anisotropic shells. Dong et al. [17] developed a theory

for thin laminated anisotropic shells by applying Donnell type equations to Reissner's

and Stavsky's [18] work for plates. Fltigge's shell theory [141 was used by Cheng and

Ho [19] in their buckling analysis of laminated anisotropic cylindrical shells. A first ap-

proximation theory for the unsymmetric deformation of nonhomogeneous, anisotropic,

elastic cylindrical shells was derived by Widera et al. [20-22] by means of asymptotic in-

tegration of the three-dimensional elasticity equations. The laminated shell theories

discussed thus far are based on the Kirchhoff-Love assumptions and therefore are only

applicable to thin shells with mild material anisotropy. Application of such theories to

layered anisotropic laminated composite shells could lead to as much as 30% or more

errors in deflections, stresses, and frequencies according to Reddy [23].

The effects of transverse shear deformation in composite shells were introduced by

Gulati and Essenburg [24], Hsu and Wang [2.51, Zukas and Vinson [26l, and Dong and

Tso [27]. The development presented in [24] is based upon the shell theory given by

Naghdi [28,29] and assumes symmetry of the elastic properties with respect to the middle

surface of the shell. The theory presented in [26] also includes the effects of transverse

isotropy and thermal expansion through the shell thickness. The theories of references

[25,27] are only applicable to orthotropic cylinders. Whitney and Sun [30,31] developed
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a higher-order theory for laminated anisotropic cylindrical shells. The theory includes

both transverse shear deformations and transverse normal strain. Reddy [23,32] extended

Sanders theory for doubly curved shells to a shear deformation theory of laminated

shells. The theory accounts for transverse shear strains and rotation about the normal

to the shell midsurface. Reddy and Liu [33] proposed a higher-order shear deformation

theory for laminated shells. The theory is based on a displacement field in which the

displacements of the middle surface are expanded as cubic functions of the thickness

coordinate, and the transverse displacement is assumed constant through the thickness.

This displacement field leads to a parabolic distribution of the transverse shear stresses

and therefore no shear correction factors are used. Librescu [34,35] developed a refined

geometrically nonlinear theory of anisotropic symmetrically laminated composite shal-

low shells by incorporating transverse shear deformation and transverse normal stress

effects. The theory was derived using a Lagrangian formulation in which the three-

dimensional strain displacement relations were modified to include the nonlinear terms.

Recently, Reddy [36] developed a layerwise laminate theory which yields a layerwise

smooth representation of displacements through the thickness. The layerwise laminate

theory of Reddy (LWTR) reduces the 3-D elasticity theory to a quasi 3-D laminate

theory by assuming an approximation of displacements through the thickness. Reddy

[37] and Reddy and Barbero [38] extended the LWTR to the vibration of laminated cy-

lindrical shells. Further study of laminated shell theories may be found in papers by Bert

and Francis [39] and Kapania [40].

A large number of different finite elements have been formulated for the static and dy.

namic analysis of isotropic and anisotropic shells. One of three approaches are usually

followed in shell finite element theoretical development. The first approach involves the
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development Of finite elements from an existing 2-D shell theory [41,42]. In the second

approach, 3-D elements based on three-dimensional elasticity theory are used [43,44].

For the third method, 3-D degenerated elements are derived from the 3-D elasticity

theory of shells [43-49]. One of the earliest uses of finite elements in layered composite

shells was provided by Dong [50] on the analysis of statically loaded orthotropic shells

of revolution. Other authors [31-34] continued the development of finite elements appli-

cable to laminated composite shells. Nonlinear analysis is critical in the study of shell

structures. The nonlinear response of shells under external loads was published in refer-

ences [3 I, 47-49, 55-59] among others for laminated composite shells. A more detailed

discussion of laminated shell finite elements may be found in [40].

1.2.2 Structural Analysis of Stiffened Shells

The circular cylindrical shell is used extensively as a primary load carrying structure in

many applications and is therefore subjected to various loadings. Design limit loads of-

ten result from general or local instability due to the action or interaction of pressure,

axial, torsional, and thermal loads. The elastic stability ofmonocoque isotropic cylinders

is well documented in the open literature [5,14,60-67]. Developments on the buckling

of unstiffened laminated composite circular cylinders may be found in references [68-77].

In 1947, Van der Neut [78] studied the effects of eccentric stiffeners on the buckling of

circular cylindrical shells. The work presented in [78] showed a factor of" three in the

difference between the theoretical buckling loads for internally and externally stiffened

shells under axial compression. Baruch and Singer [79] presented work on the general

instability of a simply supported cylindrical shell under hydrostatic pressure that was
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analyzed by considering the 'distributed stiffness' of the frames and stringers separately,

taking into account their eccentricity. Additional theoretical work on the buckling of

isotropic cylindrical shells with eccentric stiffeners may be found in the papers by

Hedgcpeth and Hall [80], Singer et al. [81,821, Block et al. [83], and McElman et al. 18,:1].

Some of the first experimental work on the buckling of eccentrically stiffened cylinders

was conducted by Card [851 and this work was compared to theoretical results by Card

and Jones [861. Many other papers on the theoretical and experimental buckling of ec-

centrically stiffened cylindrical shells are available in the open literature. The calculation

of accurate buckling loads for stiffened composite cylinders is a formidable task because

of material anisotropy, various loading and boundary conditions, skin-stiffener inter-

action, differing moduli in tension and compression, and nonlinear behavior.

Analysis of stiffened laminated cylindrical shells was first employed using the smeared

stiffener approach. This type of analysis treats the eccentrically stiffened composite shell

as an equivalent laminated cylindrical shell. A variational procedure is usually employed

in order to obtain the results. The smeared approach was used by Simitses [87-89] and

Jones [90,91] for the stability analysis of ring and stringer (axially) stiffened composi_.e

cylindrical shells. Simitses [87-89] considered the stiffened circular cylindrical shell as

being orthotropic and reduced the strain-displacement relations to the Donnell type

equations. Various loading conditions such as axial compression, lateral pressure,

hydrostatic pressure, and torsion are considered for shells with clamped boundary con-

ditions in references [87-89]. Jones' work [90,911 was presented for a circular cylindrical

shell with multiple orthotropic layers and eccentric stiffeners under axial compression,

lateral pressure, or a combination thereof. Classical stability theory which implies a

membrane prebuckled state was used for the simply supported edge boundary condi-
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tions. More recently, Reddy [37] has developed a smeared approach for axial and ring

stiffened composite shells using the layerwise theory.

A new technology known as continuous filament grid stiffening has enabled the manu-

facture of complex stiffened cylindrical shells. This cost effective process reduces the

number of parts and fasteners since the stiffeners are integrally wound as part of the

shell. In this study, emphasis will be upon geodesically stiffened shells produced by the

aforementioned manufacturing process. To date, published work on the subject of

geodesically stiffened shells is sparse. Buckling analysis of orthotropic cylindrical shells

with eccentric spiral-type stiffeners using the smeared technique was conducted by

Soong [92] for simply supported shells subjected to one of the following loadings: axial

compression, hydrostatic pressure, torsion, and bending. Soong concluded that based

on equal stiffener weight or equal strength, the spirally stiffened cylinders are about

equal to the ring and stringer cylinders for axial compression and pure bending loads,

but are superior in resisting torsion hydrostatic pressure loads. Meyer [93] studied an

isotropic geodesicaUy stiffened shell have 45 o integrally milled out one sided stiffeners.

This type of stiffener arrangement was used to exclude the buckling modes between hoop

reinforcements. Meyer used a smeared approach for simply supported shells and con-

cluded that no increases in axial critical loads were obtained for addition of internal

pressure. Studies of isogrid composite cylindrical shells were conducted by Rehfield et

al. [94] as well as Reddy et al. [95] extended the work to onhogrid stiffened composite

shells. In both papers [94,95] a Donnell type theory was used for general instability, skin

buckling, and stiffener buckling. Shaw and Simitses [96] used a smeared procedure in the

nonlinear analysis of axially loaded laminated cylindrical shells with various in place

transverse supports. The work in [96] includes the effects of geometric imperfections and

lamina stacking sequence. Further work on geodesically type stiffened cylindrical shells
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using a smeared approach may be found in references [97-99]. The smeared stiffener

technique is effective if the cross sections of each stiffener is the same and the stiffener

spacing is small. If the number of stiffeners is small or the spacing is large, the smeared

stiffener analysis does not yield accurate results and usually overpredicts the buckling

load.

A procedure other than the smeared technique must be used for the buckling analysis,

vibration and/or stress analysis of sparsely stiffened shells. It is desirable to treat the

stiffeners and skin as separate structural components to determine the most accurate

buckling or vibration mode and the local peak stresses and strains. The discrete analysis

procedure is the only alternative to a finite element analysis to study localized effects.

Several authors [100-103] have studied the vibration analysis of discretely stiffened cy-

lindrical shells. Because of the relatively simple geometry of ring stiffened cylindrical

shells, treatment of the circumferential rings as discrete elements have been considered

in several papers [104-107]. Wang et al. [108,109] first developed a discrete analysis for

isotropic cylindrical shells with stiffeners and then later extended the same concepts to

composite cylindrical shells with stiffeners [110]. In the discrete analysis of[110] separate

equations are developed for the axial stiffeners, ring stiffeners, and skin. The equations

are coupled through interacting normal and shear loads via the application of an Airy

stress function to the compatibility relations. Pochtman and Tugai [111] used a discrete

analysis to study the stability of composite cylindrical shells stiffened with cross ribs. The

development was based on the principle of minimum potential energy where the strain

energy of the skin and the stiffeners were treated as separate quantities. Chao et al. [112]

also employed the principle of minimum potential energy in the analysis of stiffened

orthotropic foam sandwich cylindrical shells. The authors in [112] included the effects

of transverse shear deformation in their development. Birman [113] applied a discrete
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analysis to the divergence instability of reinforced composite cylindrical shells, The de-

velopment consisted of solving the equations of motion in terms of displacements. The

Dirac delta function was applied to discretely include the stiffeners' extensional, bending,

and torsional terms in the equations of motion. Additional references on buckling of

discretely stiffened cylindrical shells may be found in [114-117].

Another method of constraining stiffeners to the skin is by the application of the

Lagrange multiplier method. Several authors used the Lagrange multiplier method in

plate stability r)roblems in order to satisfy boundary conditions [118-121]. AI-Shareedah

and Seireg [122] correctly predicted the transverse deflection of a pressure loaded rec-

tangular isotropic plate with an oblique stiffener. Lagrange multipliers were used to en-

force transverse displacement continuity between the plate and stiffener at a finite

number of points. Phillips and Gtirdal [123] applied the same technique to the stability

of orthotropic plates with multiple orthotropic oblique stiffeners. The Lagrange multi-

plier method should be viable for stiffened composite circular cylindrical shells. Johnson

and Rastogi [124] applied the Lagrange multiplier method to onhogonally stiffened

composite cylindrical shells in order to determine the interacting loads between the

stiffeners and the shell wall when the shells are subjected to internal pressure. No studies

are presented in the open literature on the buckling of stiffened layerwise plates or shells

having discrete stiffeners using an analytical method, The Lagrange multiplier method

could easily be used to attach the stiffeners to the skin of a layerwise plate or shell.

Finite element analysis of stiffened structures has been divided into several categories.

The simplest yet least accurate method is to use a coarse model with lumped stiffeners.

In the lumped stiffener method each stiffener is lumped into the plate or shell on the

nearest element boundary, The stiffeners are assumed to be connected along the nodes
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of the plate or shell elements as bar elements. This model introduces inconsistencies.

The lumped method is theoretically inaccurate, as the lumped stiffener indicates a cou-

pling along the nodes to which it is connected whereas a stiffener placed within a plate

or shell element indicates coupling of all the nodes of the element. Further, diagonal

stiffening is dimcult to achieve with this method. A second approach is to use

orthotropic simulation (smeared technique) of stiffened structures. This method and its

deficiencies was discussed previously for buckling analysis of stiffened cylindrical shells.

Another approach is the development of a special bending element where the stiffener

stiffnesses are incorporated into the bending element at the elemental level see references

[12.5-1301. This method may work well for bending, but the effects of in-plane loadings

are not documented. Also, obtaining the skin/stiffener interaction mechanisms is diffi-

cult to extract using this approach. The final method of modeling stiffened structures

is by representing the stiffeners as beam, plate, or shell elements. This method provides

the greatest accuracy, the most realistic model of skin/stiffener interaction, and conse-

quently will be the method used in this work.

When employing the discretely stiffened finite element approach often curved beams are

used as reinforcing members for shells. The beam elements must have a compatible dis-

placement pattern with that of the shell. Kohnke et al. [131] analyzed an eccentrically

stiffened cylindrical shell by using a beam finite element with displacements compatible

with the cylindrical shell element. Venkatesh and Rao [132] developed a laminated

anisotropic curved beam finite element to be used in conjunction with anisotropic shell

elements [133-13.5]. Bhimaraddi et al. [ 136] used shear deformable laminated curved beam

elements to study stiffened laminated shells. Ferguson and Clark [137] developed a var-

iable thickness curved beam and shell stiffening element with transverse shear deforma-

tion for isotropic elements. Reddy and Liao [138,139] utilized degenerated 3-D beam
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elements as stiffening members in their nonlinear analysis of composite shells. An alter-

native approach to stiffening shell structures with beams is to approximate the stiffeners

with the same element type used for the shell [140]. Using this procedure results in the

introduction of a substantial number of additional nodes and nodal displacements,

Work on postbuckling analysis of stiffened shells is sparse. Knight and Starnes et al.

[1,2] have done some work on the postbuckling analysis of stiffened and unstiffened

composite panels using a finite element analysis. Sandhu et al. [141] performed a finite

element analysis of the torsional buckling and postbuckling of composite geodetic cyl-

inders. This work concluded that joint flexibility is an important factor in the overall

shell behavior. Hansen and Tennyson [142] presented an overview of the development

of a computer model for analyzing the crash response of stiffened composite fuselage

structures. A finite element formulation was presented that supposedly can treat lami-

nated shell buckling, large deflections, nonlinear response, and element failure. However,

no results were presented for this work.

The displacements, stresses, and failure analysis of shells is receiving more attention than

in the past. Leissa and Qatu [143] applied the Ritz method to study the stresses and

deflections in composite cantilevered shallow shells. Boitnott, Johnson, and Starnes

[1441 calculated the linear and nonlinear interlaminar stresses for pressurized composite

cylindrical panels. The work in reference [144] also included a nonlinear failure analysis

of pressurized composite panels. Failure was found to occur near the corners of the

panels along the boundary of the panel. Research work on the stress distribution near

the stiffener intersections is lacking. The layerwise theory could easily be adapted to the

analysis of stresses near the stiffener intersections. Of particular interest may be the

interlaminar stress at the stiffener intersections. Furthermore, the layerwise theory is a
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quasi 3-D theory which overcomes the finite element aspect ratio problem of traditional

3-D elements.

1.2.3 Failure Mechanisms

Failure analysis of stiffened composite structures is a highly complex and sparsely re-

searched area. The failure scenarios for stiffened composite structures include: general

instability (global structural buckling), stiffener buckling (crippling), skin buckling, and

material failure. If the structure is designed to have postbuckling strength, then failure

will most likely be based upon ultimate rather than buckling strength. Spier [145] con-

ducted a failure/column buckling analysis of graphite epoxy stiffened panels using a

mechanics of materials approach. A comparison of skin buckling, stiffener crippling, and

structural buckling was made. Reddy et al. [95] performed an analysis based on me-

chanics of materials in their study of isogrid and orthogrid stiffened composite circular

shells. Their analysis considered general instability, rib (stiffener) crippling, and skin

buckling.

In order to determine the failure load of a stiffened structure some type of failure crite-

rion must be applied. Two approaches to failure may be used. The mechanistic (micro-

mechanics) failure approach deals with the failure of a composite material at the

constituent material (fiber, matrix) level. The micromechanics approach is difficult and

often the results are intractable except for simplistic models. The phenomenological

(macromechanics) failure prediction is developed by treating the composite as a homo-
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geneous material where the effects of the constituent materials are detected only as av.

cragcd composite properties.

The mode of failure of laminated composites may be by fiber yielding, matrix yielding,

fiber failure, delamination, or fracture, Tlle first three f'ailure modes depend on a con-

stituent's strength properties. Delamination generally occurs in the form of cracks in the

plane of the composite, resulting from manufacturing defects, low strength of resin rich

regions, and high local stresses due to improper stacking sequence. Fracture is the result

of preexisting voids or cracks in the constituent materials. Macroscopic failure criteria

are based upon the tensile, compressive, and shear strengths of an individual lamina.

A myriad of literature exists concerning failure of composite materials. A survey of

macroscopic failure criteria applied to composite materials is presented by Sandhu [146],

Tsai [147],Tsai and Hahn [148],and Nahas [149].Some of the more popular failurecri-

teria include the maximum stresscriterion,maximum straincriterion,and quadratic

polynomial criteriasuch those proposed by Hill [150],Azzi-Tsai [15l],Chamis [152],

Hoffman [153],and Tsai-Wu [154].The maximum stresscriterionand maximum strain

criterionare calledindependent mode failurecriteriaand thus there is no interaction

between modes of failure.The quadraticpolynomial failuretheoriesare mathematical in

nature and arc basicallyempirical curve-fittingtechniques. There existsconsiderable

failuremode interactionwith the polynomial failuretheories.The Tsai-Wu criterionis

a tensor failuretheory which isinvariantunder rotation of coordinates and transforms

via known tensor transformation laws. None of the aforementioned failurecriteriacan

predictthe mode of failure.Hashin [155] proposed a failurecriterionwhich considers

four distinctfailuremodes - tensileand compressive fiberand matrix modes.
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Several authors have presented some relatively simple micromechanics failure ap-

proaches. Craddock and Zak [156] developed a theoretical model which accounts for

large transverse stresses in the plies (laminae) and permits gradual plastic yielding of the

matrix to failure. Sanders et al. [157] applied simple micromechanics failure models such

as microbuckling, 'kink-band' failure, layer shear, and various interactive modes for ap-

plication to composite aircraft design.

Initiation of failure is often determined via the first-ply failure analysis. Cope and Pipes

[158] conducted finite element analyses of composite spar-wingskin joints and ultimate

strength was predicted through application of Tsai-Wu, maximum stress, and maximum

shear failure criterion. Reddy and Pandey [159] conducted first-ply failure analyses of

composite laminates. The maximum stress, maximum strain, Hill, Tsai-Wu, and

Hoffman failure criterion were used in their analyses. Kim and Soni [160,161] developed

an analytical technique to predict the onset of delamination in laminated composites.

Their work was extended by Brewer and Lagace [162] to develop a quadratic delami-

nation criterion. This criterion is an average stress criterion which compares the calcu-

lated out-of-plane interlaminar stresses to their related strength parameters. The

criterion showed excellent correlation with experimental delamination initiation stresses.
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1.3 Present Work

The literature review presented in the previous sections indicates that analysis of stiff-

ened composite shells is an area of extreme interest. The major emphasis of this research

is to develop numerical techniques to study the buckling, linear, nonlinear, and failure

behavior of geodesically stiffened circular cylindrical shells. The layerwise laminate the-

ory of Reddy (LWTR) will be extended to stiffened circular cylindrical composite shells.

Developments using the LWTR for shells will be applied using both a Ritz variational

technique and a finite element approach. Application of appropriate failure criterion

will be applied to the model in order to determine the appropriate failure scenario.

The present study was undertaken with the following objectives:

. Develop a layerwise Ritz variational method with discrete stiffeners using the

Lagrange multiplier constraint approach. Use this method to study the buckling of

axially, ring, and geodesically stiffened cylindrical composite shells.

. Develop and verify a layerwise finite element algorithm for accurate prediction of

displacements and stresses in composite plates and shells. The stiffeners are to be

modeled as layerwise beam elements. Linear and nonlinear strain displacement re-

lations are to be considered.

o Calculate the displacements, in-plane stresses, and interlarninar stresses in stiffened

cylindrical shells with emphasis on geodesically stiffened shells when the shells are

subjected to various loading conditions.
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4. Apply failure criteria to study the first-ply failure of geodesically stiffened cylindrical

compos!te shells.

The governing equations of stiffened laminated shells using a layer'wise theory is pre-

sented in Chapter 2. Chapter 3 deals with the development of the Ritz variational

method and the Lagrange multiplier constraint method. The finite element model, ele-

ment types, numerical approach, and finite element verification problems are presented

in Chapter 4. The results for several problems are described in Chapter .5. Conclusions

and recommendations are presented in Chapter 6.
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Chapter 2

Governing Equations

2.1 Introduction

The development of refined shell theories For laminated composite shells has been moti-

vated by the shortcomings of the classical lamination theory. The classical lamination

theory (CLT) as applied to shells is based upon the Kirchhoff-Love hypothesis in which

the shear deformations are neglected. Consequently, first=order and higher order theories

were developed to account for transverse stresses. These theories provide improved

global response for deflections, natural frequencies, and buckling loads. However, these

theories which are based upon a continuous and smooth displacement field do not yield

good estimates of interlaminar stresses. Improved theories must be applied to model the

local behavior near stiffener intersections of stiffened shells because laminate failure

modes may depend upon the interlaminar stresses. The layerwise laminate theory of

Reddy (LWTR), which has been shown to work well for plates, will be extended to cir-

cular cylindrical shells. The basic equations for circular cylindrical shells using the
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LWTR will be presented in the next section. Also, included in the development will be

governing equations for discrete stiffeners.

2.2 Displacements and Strains for Laminated Shells

The LWTP,. is a displacement based theory in which the three.dimensional elasticity

theory is reduced to a quasi three-dimensional laminate theory by assuming an ap-

proximation of the displacements through the thickness. The displacement approxi-

mation is accomplished via a layerwise approximation through each individual lamina.

A polynomial expansion with local support (finite element approximation) is used in this

development. Consider a laminated circular cylindrical shell with N orthotropic lamina

having the coordinate system described in Figure 2. The displacements u, v, w at a ge-

neric point (x, y, z) in the laminate are assumed to be of the form (see P,,eddy [37])

N+I

j=.l

N+l

J,,,I

N+i

J=l

(2.1)

where N is the total number of layers (N+ i interfaces including the surfaces) and

uj, vl, wj are undetermined coemcients. The _ are any continuous functions that satisfy

the condition through the entire thickness
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_'(0)=Oforall j=l,2,..., (N+I) (2.2)

In this development the summation convention will be used for repeated subscripts and

superscripts.

The approximation in Eq. (2.1) can be viewed as the global semi-discrete finite element

approximations [163] of u, v, and w through the thickness. The g# denote the global

interpolation functions, and u_, v_,and w_ at.' the global nodal values ofu, v, and w at the

interface locations through the thickness of the laminate. A finite element approximation

based on the Lagrangian interpolation through the thickness can be obtained from Eq.

(2.1). In this study a linear interpolation will be assumed and thus

= = =
(2.3)

where U,Ck),V,c_),WIk)representthe valuesof U, V, W at the i-thnode ofthe k-th lamina

as displayedin Figure 3.

The linearglobal interpolations are given by

_¢,_- ') (z), zk_ , < z < zk
_k(_)= _.V'_k'(_), zk < z < _.k+,

(k= 2,3,...,N+ I)
(k=l,2,...,_ (2.4)

where _$k)(i= l,2) isthe localLagrange interpolationfunction associatedwith the i-th

node of the k-th layeras defined in Figure 3.
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The theory presentedin this studywill bebasedupon the circular cylindrical shell ana-

logue of the yon K_irm_in large deflection theory. This theory was applied by Donnell

[5] and assumes that the lateral displacement w is large enough that in plane forces and

displacements must be considered in the nonlinear form. The strain displacement re-

lations of the Donnell/von Karm_m type [5,63] are

a_.E.u 1 (aw) 2_1= ax+T -_x

a,+. , (a,_) 2

aw

av Ow v

_4= a-T+ ay R
Ou Ow

_5 ffi Oz + ax

Ou + Ov Ow aw
_6ffi Oy "_x + ax ay

(2.5)

where R is the radius of the circular cylindrical shell. The coordinated system used in

this analysis is defined in Figure 2. Upon substitution of Eq. (2.1) into Eq. (2.5) yields

the following relationships

_ "_'_ _+T .__.__t .

_2= \ ay +'T w__t l aw_ j awl
(cont.)
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d¢_ ( aw_ _)c,_= v_---Z--z+ ay R 4"

de i aw l _,_= u,--_ +--_-x (2.6)

for alli,j = 1,2,...,N + 1.

2.3 Displacements and Strains for Laminated Beams

The layerwise theory is extended to beams in a procedure similar to laminated shells.

Consider a laminated beam comprised of N orthotropic lamina having a coordinate

system described in Figure 4c. The displacements u and w at a generic point (_, _, _) in

the beam are assumed to be of the form

N+I

Z
y=,l

N4-1

J-I

(2.7)

Here the u is the local displacement along the axis of the beam and w is the transverse

displacement. In thisresearch the out-of-plane stiffnessand subsequently the out.of-

plane displacement v isgenerated from the ratioof the out-of-planebeam bending mo-

ment of inertiato the in-plane beam bending moment of inertia.See section4.5 for a

descriptionof the out-of-planestiffnessgeneration. Torsional stiffnessof the layerwise

beams isnot inherentlypresent in the layerwiseelements,but thiscould bc included if
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an assumed displacement distribution through the thickness of the stiffeners was made.

Including torsional stiffness would involve significantly more development for the beam

elements and is not included in this study. The importance of torsional stiffness in

layerwise stiffeners ,leeds further study and will be left for future work.

The strain relations for the stiffeners are developed in a procedure similar to that of the

shell. The stiffeners are modeled as discrete structures and thus developments are made

for individual stiffeners. A description of the stiffener coordinate systems is provided in

Figure ,4. Figures 1 and 5 contain illustrations of the geodesicaUy stiffened and axial/ring

stiffened shells respectively. The stiffeners are assumed to behave like beams. In addi-

tion, tlle displacement field is assumed to be similar to that of shells. See references

[132-137,16,1,165] for similar curved beam developments. The stiffener strain displace-

ment relations of the Donnell/von K_irm_in type are

Ou I ( <9,, .,

Ou Ow u

(2.8)

Here the radius of the stiffeners R', is developed from vector calculus and analytical ge-

ometry (see Figure 6) and is given by the following relation

R 2 + b 2

R' - R (2.9)

where

Stiffener pitch *= 2nb (2.10)
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Here b is the pitch parameter as shown in Figure 6. For ring stiffeners b = 0 and

R' --- R and for axial stiffeners b -- oo and thus R' == co.

Upon substitution of Eq. (2.7) into Eq. (2.8) yields the following layerwise following re-

lations for the stiffeners

d_bI awl _i ul _=u,--Z-+W-" -W-.

• --G-¢

(2.11)

for all i,j - 1, 2, ..., number of beam interfaces.

2.4 Variational Formulation for Laminated Shells

The principle of virtual displacements will be applied to the shell and stiffeners sepa-

rately. For the shell, the principle of virtual displacements can be used to derive a con-

sistent set of differential equations composed of N constant thickness lamina. The

Principle of Minimum Potential Energy 61"I may be expressed in variational form as

6I"I ffi bU+ 6V=O (2.12)

Here 6 U is the virtual strain energy (virtual work done by the internal stresses) and 6 V

represents the variation of the potential of the applied forces. The minimum potential

energy statement for the shell in terms of stresses and virtual strains caused by virtual

displacements may be expressed as
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Figure 6. Description of the radius of curvature for geodesic stiffeners.
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Lf_FI -.--. {al_ 1
-.__..h

where oi, a2, o3, a(, as, and o4 are the shell stresses, 6_z, 6c_, 6c3, 6_,, 6c5 and 6_-6 are the

virtual strains in the shell coordinates, h is the total shell thickness, £2 denotes the total

shell area at the midplane, and once again 6 V represents the variation of the potential

of the applied forces. The variation of the total potential energy in terms of the stress

resultants, displacements, and virtual displacements is obtained by substituting the strain

displacement equations (2.6) and integratir, g through the shell thickness. The variation

of the potential energy then takes the following form

61"I=

(2.1a)

where the stress resultants, ML M'J, Q{, Q_, QL K{, and K_, and the variation of the po-

tential of the applied forces, 6 V, take the following form
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h h

-h -h
2 2

h,
' d i

2

h

(xi,= s,a.) ldz
-h
2

h

_V-- - p6wd_- (N,,6un+ Ns6us)dzd_
-..A.h
2

h

2

(_ -- 1, 2, 6)

(2.15a)

for a linear prebuckling analysis 6 V reduces to

A A

For the potential energy of external loads p is the applied pressure, N. and N, are the

A A A

applied in-plane normal and tangential forces respectively, and M., M,, and Q are the

applied edge normal moment, tangential moment, and shear force respectively. For a

buckling analysis N_, N2, and N6 are the axial, lateral, and shear external forces respec-

tively acting on the shell membrane.

The cylindrical shell is assumed to be laminated of orthotropic layers with the principal

material coordinates of each layer oriented arbitrarily with respect to the shell axis. The

layer constitutive equations referred to the shell coordinates are given as
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oiI

C11

CI2

Cl3

Ci6

C12 C13 C_6

C22 C23 C:6

G3 Cn G6

c26 G6 c66

(2.16a)

(2.16b)

where _,v are the components of the orthotropic stiffness matrix.

in terms of displacements is given by the following expression

The stress resultants

h h

-h -_ (_l/s)ddz, (j = 1,2, 3,6)
2 2

awl awk nOk Owl Owk I Owj awk l

(2.17a)

(2.17b)

(% "s' _6.'s o / % % )M_= L"" o, + t+ +

1 Owi Owk tlk Owi Ow_ 1 nVk Owi Owk I

(2.17c)
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d_._,dz
a_ dzQ'I---_=.

= Ox

Ox

(2.17e)

h l

rr dO .

-.-f-

Q_

(./.- 1,2,3,6)

- Ox @

2

h

2

M_

Ox 8x

(2.17g)

(2.17h)

(2.t'7_3

3_
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. Ow k Owt ]
i nijk! C3Wk OWl nijkt Owk Owt 1 D_t+T _'_2 _ _ +_'_' _ Ty +"f _ J

(2.ivj)

Mg=U,°-_-_+_'"k_+7 +_{_+_'k-_7+_
1 nOkt OWk OWt nUU Owk OWt ! ntyU OWk Owl ]

+T"° _ _ +"°' _ Ty + T ''2' _ J

(2.17k)

for all i,j,k,l - I, 2, ..., N + I and where

(2.18)

Note that D_s, L_i_, D_, and D'_ I are symmetric in their subscripts and superscripts.

D,q, t_t
etc.

(2.19)

The coefficients with a single bar over them are not symmetric with respect to the

superscripts. The variational statement in terms of displacements is provided in Ap-

pendix A.

Governing Equations 36



2.5 Variational Formulation for Laminated Beams

The variation of the potential energy for the beam along the beam length, L., may be

expressed in the following manner

/"fI'l= (a,7,T6c,m + a¢C6t¢¢+ e,7¢3t,7(}drl + 6 V (2.20)

The three dimensional constitutive equations for an anisotropic body are reduced to that

of a one-dimensional body by eliminating the normal stress a_¢, the in-plane shear stress

a._, and the transverse shear stress a_. Similar procedures for the modeling of laminated

composite beams were employed by Bhimaraddi and Chandrashekhara [164] and more

recently by Kassegne [165]. The stresses a_, a,y_, and 0_¢ are eliminated, but the strains

q_, e.t, and tt: are not eliminated. For a laminated beam the constitutive relations re-

duce to the following form

0 ° (2.21)

where the components of the reduced orthotropic beam stiffness matrix, _s, are ex-

pressed in terms of the original orthotropic stiffness terms, Cq, and are expressed in the

following form
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( --)C22G6 - q62

(--)_6C36 -- G3C66 _12

(.... )
q2C66- q6 2

e_ = g, ¢'=_
c_

i w J ! _ t

C;2C2_- CI_C2:
+ C16

c22c66 - c-262

(.... )+ C26C23- G6q2 Cl6

(.... )+ C2_C23-G6G2 g36
e::r_6- e:o:

(2.22)

Finally, the nonlinear variational statement for laminated beams in terms of displace-

ments may be expressed as

oZ% I % a,., aw,]{aa.,,¢[
-Bz,R'+TsfP Y. Y. _ j_,/j_ m0+6v

(2.23)

For all i,j,k,l ffi 1, 2, ..., number of beam interfaces.

Here f_b represents the in-plane area of the beam elements and where
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h h

-- c:: f _S 1 ' kT G/3¢ dz
":/3 _ -h

m

2 2

h h

2 2

m I

2 2

(2.24)

Here h is the beam height and integration is made through the height of the beam dz.

Note that B'dp, B_/p, Bg_, and B_/_I are symmetric in their subscripts and superscripts.

•,,,# = B_a, etc.

(2.25)

The coefficients with a single bar over them are not symmetric with respect to the

superscripts.

The potential of the external forces for a beam is given as

(2.26)

for all i,j = 1, 2, ..., number of beam interfaces.

where L, is the length of the beam and F, is the force acting along the length of the

stiffener.
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2.6 Failure Equations

The various failure criteria were discussed in section 1.2.3. In this study, a macrome-

chanics based first-ply Failure analysis will be conducted For some select cases. As dis-

cussed previously there are many macromechanics based failure criteria. The failure

analysis involves calculating the stresses and strains at a point in the structure and then

applying the selected criterion. These criterion include the the experimentally deter-

mined macroscopic material strength data. In this research work, the Tsai-Wu Failure

theory is used as the working failure criterion. The Tsai-Wu criterion was selected be-

cause of its general character. The Tsai-Wu criterion has three distinct advantages: (1)

invariance under coordinate rotation; (2) transformations are made via known tensor

transformations; and (3) there exists symmetry of properties similar to those of the

stitTnesses and compliances. Therefore, the Tsai-Wu criterion was selected for this work.

The Tsai-Wu criterionisgiven by the followingexpression

F:t + F_iotoy > 1 i, j - 1, ..., 6 (2.27)

Here ot are the stress components and F_ and F_l arc the strength terms. The strength

tensor terms may be expressed as

1 1

Xr xc
i 1

1='2= Yr Yc

1 !

G- zr Zc

(cont.)
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Fix -

XTXc

1

1:22- Yr "c
I

F_3-
R 2

!

F_= SZ

1

Fss-- T2

F_6
1

ZrZc
1 1

2 _/XrXc YrYc

! 1

2 ,JXrXcZrZc

1 I

2 ,/YrYcZrZc

(2.2s)

All other strength tensor components are zero. Here a_, a2, a_ are the normal stress

components, a4, as, a6 are the shear stress components, Xr (Xc), Yr (Y c), Zr (Zc) are

the lamina normal tensile (compressive) strengths in the x, y, z directions respectively,

and R, S, T are the shear strengths in the yz, xz, and xy planes respectively. The values

for Xr, Xc, Yr, Yc, Zr, Zc, R, S, and T will be given later in this research work.
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Chapter 3

Ritz Buckling Method

3.1 Introduction

In this chapter a method is developed to study the buckling of stilTened cylindrical

composite shells with discrete stiffeners using a closed form analytical solution. The

stiffeners are directly attached to the shell where the components of the displacements

between the shell skin and the stiffeners is accomplished via the application of the

Lagrange multiplier method. Many of the equations developed in Chapter 2 are appli-

cable to the Ritz buckling method derived here, but some simplifications are also incor-

porated. In lieu of layerwise beams, the Euler-Bernoulli beam theory is used in

developing the discrete stiffeners. The method developed in this chapter is applicable to

cross-ply and some quasi-isotropic shell layups. In this study, simply supported edge

boundary conditions will be assumed in order to apply the closed form solutions.

Equations (2.1)-(2.6) and (2.12)-(2.19) are applicable for the layerwise shell used in this

approach. The Euler-Bernoulli beam theory is presented in the next section.
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3.2 Euler-Bernoulli Beam Stiffeners

The governing equations for the Euler-Bernoulli beams are developed in a procedure

similar to that for layerwise beams of sections 2.3 and 2.5. The stiffeners are modeled

as discrete structures and thus the development of a generic stiffening element may be

applied to axial, ring, or geodesic stiffeners. The displacements for a stiffener using the

Euler-Bemoulli beam theory are given by the following relation

I
w=w s

i--1,2 .... ,T
(3.1)

where u_ and wl, are the displacements For each of the T stiffeners. Here u is the local

displacement of the stiffeners. For ring stiffeners the u's are replaced by v's. A de-

scription of the stiffener coordinate system is provided in Figure 4.

The Euler-Bernoulli strains For the stiffeners are developed from the displacements and

are given as

"' = + T a,1 j --a,? i=1,2 .... ,T (3.2)

The definition of R' was developed in section 2.3. Here _ is the distance from the

stiffener centroid to the reference surface. The uniaxial stress=strain equation for the

stiffeners is

1
os= EtFts i= l,2,..., T (3.3)
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where a_ is the stress in an individual stiffener, El is the modulus of the stiffener, and _

is the strain in an individual stiffener.

The variation of the potential energy For the stiffeners may be expressed as

6FI = 6U_ + 6_ i= l,2,..., T (3.4)

The variation of the strain energy 6 UI for an individual stiffener may be expressed as

a.: -N". a. d,7

(3.5)

for i: 1,2,...,T.

where

Ii = moment of inertia of an individual stiffener about the reference surface (ie.,

^

- O) and thus/_ = l_c + (_)2AI.

• _I : distance from the stiffener centroid to the reference surface.
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• L] = length of an individual stiffener.

The variation of the external forces for the Euler-Bernoulli beam stiffeners is developed

from the potentiar energy statement and is expressed as

6_-- +_ _ O_l d. i=l,2,...,T
(3.6)

where _ is the force acting along the length of the stiffener.

3.3 Lagrange Multiplier Method

The procedure used in applying the fundamental mathematical principles of Lagrange

multipliers is described briefly in this section. The Lagrange multiplier method will be

used to constrain the discrete stiffeners to the shell surface. Proof of the validity of the

Lagrange multiplier method is provided in references [118, 119]. AI-Shareedah and

Seireg [ 120-122] successfully applied the Lagrange multiplier method to stiffened plates.

Phillips and G0rdal [123] applied this method in the stability analysis of orthotropic

plates with multiple orthotropic geodesic stiffeners under in-plane loadings. A de-

scription of the Lagrange multiplier method follows.

Let it be required to minimize a function of I variables xt,x2, ..., xt

fix1, x2, ..., xl) (3.7)
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where the x's _tre not independent but are bound together by J independent constraint

functions hj such that

ht(x_,x_ .... ,x 3=0

h2(xt, x2, ..., xl) = 0

hj(x I, x2.... , xl) = 0

(3.s)

Lagrange's method of simultaneously minimizing f and satisfying the constraint func-

tions is to minimize a composite function L called the Lagrangian defined as

J

j==l

(3.9)

where _ denotes the vector of variables xt, xa, ..., xt and i is the vector of undetermined

Lagrange multipliers _tt, at2, ..., _,j The necessary conditions for./(_) to be a minimum

while simultaneously satisfying the constraints _ are

aL(Y,
,=0 i=, 1, 2,..., /

OL(_, _)
=o _= t,2,...,.]

(3.lo)

Differentiationof Eq. (3.9)resultsin the following setof equations

m

dx t + eel dx t =0 i-1,2,...,I
J"_ j= 1,2,...,J

hi(r) = 0

(3.11)
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Equation (3.1I) is a set of (I + J) simultaneous equations for (I + J) unknowns

2and _ The Lagrange multipliers may be used for variational type problems where the

variational statement is considered a functional similar tofl_:). The Lagrange multipliers

may be used to constrain the displacements and or rotations of a discretely stiffened

structure.

3.4 Stiffened Shell System

In this study, the stiffeners are treated as discrete structures and are attached to the skin

using the Lagrange multiplier constraint technique discussed in the previous section.

See Figure 7 for a representation of a discretely stiffened shell showing the constraint

points. The variation of the total potential energy for the stiffened cylindrical shell may

be expressed as

6r] _ 6UsHEL L + (_UsTIF F ÷ 6 VSHEL L ÷ (_ VSTIF F (3.12)

The virtual work for the shell was derived and is shown in Eqs. (2.12)-(2.19) and in Ap-

pendix A. The Euler-Bernoulli beam strain energy and potential energy was shown in

Eqs. (3.5) and (3.6) respectively. For the buckling analysis used here only the linear

portion of the virtual work statement is applicable and thus is given as

MI=
la Mtl'=_x ÷ =Ty ÷==R =Ty ÷ Ox /

I _v_+ _ a_wt a_wt

_ a6w,awj (a wtaw: awj o wt awj}

Ritz Buckling Method 47



(3.13)

for i,j = 1, 2, ..., N + 1 and for k = 1, 2, ..., T (number of stiffeners).

o

The definitions of M{, ML M_, Q{, Q], QL Ki, KL Nt, N2, and N6 are provided in

Eqs. (2.15) and (2.17). The development presented here is for specially orthotropic cyl-

inders where Cl6 == C26 =" C_ - C4_ - 0. However, when the values of

C_6, C26, C_, and C4s are small such as the case for certain quasi-isotropic materials

then the layer,vise Ritz method should provide reasonable results. This is demonstrated

in the results presented in Chapter 5.

For a buckling analysis we have

! IX

= a&
(3.14)

where ,1 is the minimum buckling eigenvalue.

We have

NI - -1, N2 - O, N_ - O, buckling under axial compressive load.
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A A A

• h'_ -- 0, N2 = -1, N6 -- 0, buckling under lateral pressure.

3.5 Buckling Solutions and Equations

The Ritz method will be employed for this buckling analysis. The results may be com-

pared to other solution procedures like those described by Jones [90,91], Reddy [37], and

linear finite element methods. The global buckling solution of stiffened circular cylin-

drical shells consists of solving Eq. (3.12) such that

,_n = o (3.15)

In order to solve the equations using a Ritz variational approach, a solution must be

assumed. In this study, simply supported edge conditions will be studied. The edge

boundary conditions for the shell skin and the individual stiffeners are (see Figure 2)

w= v = 0 at x = 0, L (3.16)

The following solutions of the Navier form which satisfy the boundary conditions are

assumed:

Shell Skin

u_= u?" cos(-._) cos(p_,)

vl -- v/"_n sin(_,.x) sin(p,_,) ;

wl-- w_" sin(_.,x) cos(B_)

i= 1,2,... ,(g+ 1)

mlt n
(3.17)

where U,_", V,'", and W,'" amplitudes are to be determined for each mode (m, n).
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Axial and Geodesic Stiffeners

tk krr
us = U; cos(at.x) ; ak-

i lk
%-- I'V; sin(_,_.x)

i= 1,2,..., T

(3.18)

Ring Stiffeners

!
t _tsin(p_) ; pt

I II

iffil, 2,...,T
(3.19)

where U_* (V_r) and W__ (W, 'r) amplitudes are to be determined for each stiffener mode k

(1). For axial stiffeners the _/axis is along the x direction and for ring stiffeners the r/axis

is along the y direction.

Substituting Eqs. (3.17)-(3.19)into the buckling expression, Eq. (3.13), and integrating

over the regions (L, = 2nR) below

L f?/ill = (6UsHELL+ '_VSHFLOa_ + (6UsT_FP+ _ VSTtFF)a_

4 L t.,

= fo fo ('USHELL + 6VsHELI.) dx dy + fo ('UsTIFF -I" 6VSTIFF) dtl

(3.20)

yields the following expression
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0 =- 6H =

(y21)

For ring stiffeners replace UIh by Vj t, Wj k by WI t, and _,, by ( - #t).

3.6 Constraint Equations

In this part of the study the displacements u and w of the shell and stiffeners will be

constrained (v and w for ring stiffeners) to attach the stiffeners to the shell skin. The

compatibility of displacements is imposed at a finite number of points along each
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stiffener (see Figure 7). The compatibility of displacement equations may be expressed

as

Axial and Geodesic Stiffener Constraint Equations

% -- ul - d_ ffi uT" cos(_mxip)cos(P_vjp)- _k cos(aknip)= 0

fjp ffi w_- _ ffi W_'* sin(a,,,xjp) cos(p,d,j.p) - IVjk sin(%rljp) = 0

i= 1,2 .... ,(N+ 1)

j= 1,2,..., T

p=l,2 .... ,P

(3.22)

Ring Stiffener Constraint Equations

,jl .
l/_ml" sin(a.,xlp ) sin(p,,yjp) - V_ sm(pf/jr ) -- 0

W_" sin(a,,,xj,) cos(p,,r,:p) - W_t cos(pftjp) ffi 0

i-- 1, 2, ... ,(N+ 1)

j=l,2 .... ,T

pffi 1,2, .... P

(3.23)

Here the subscript p represents the number of constraint points for P total constraint

points along the stiffeners. A set of Lagrange multipliers may be developed where one

multiplier is required for each constraint condition. The equations take the form

L = yjpejp + I_j_jp "F _jp_jp "q" _ljphjp (3.24)

where _,_,,u._, _,, and ffj, are the Lagrange multipliers and L is the set of Lagrange mul-

tiplier equations. The system of Lagrange multipliers L may be added to the potential

energy FI to form a variational functional I such that

I ffi 1"I+ L (3.25)
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In order to minimize the functional, the variation of I may be set equal to 0 so that

6I = 317+5L = 0 (3.26)

The minimum potential energy 61"I has been defined previously. The variation of the set

of Lagrange multipliers is

6L = 6ejpejp + ?jp6 U7 n cos(amxjp ) cos(fl_#) - )'jp3U_sk cos(a,rOp)

+ 6pjt_/p + #:p3 W_ n sin(a,,,X/p) cos(]i'_/p) - p/p6 W_ k sin(akr/jp )

+ &kjpgjp + _jp6 V':" sin(a,,:./p) sin(BjOp/p) - _/p3 vJst sin(B,,_jp)

+ 6_ljphyp + _jp314:t mn sin(amXjp) cos(fl_:p) - _bjpJwJs t sin(flnrlyp)

(3.27)

From Eq. (3.26) 61 = 0 so the individual components must therefore be 0 and hence

6 U:"tn = 0

6vTn=o

6w7'" = o

6_k=O

6_1-0

5 W_t = 0

6Vjp = 0

61_./pffiO

6 jp = 0

6 :p= 0 (3.28)

Eq. (3.28) yields 11 sets of equations which may be solved. If no ring stiffeners are

present then 9 sets of equations must be solved. Similarly, if no axial or geodesic

stiffeners are present then 9 sets of equations must be solved. Carrying out the oper.

ations of Eq. (3.28) yields the following sets of equations.
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3U?'_: _ DiJlam + - r_O'_t,.m,

- _m( _ DI_ + _l_ + yj, cos(a,nxyr) cos(flnyjp) =0

(3.29a)

LLe r_O"_tr mn 1

+ Sip sin(a,,rxip ) sin(fl#/p) -- 0

(3.29b)

,5W_": --_ -._(TD_, +_,_-

1D_a+ I

+(D,%d+ o_,.' +o_a.'+_!tR_o_,+T_!

^ 2 ^ 2 }+1_9{_ + _)_, WTn + 2t(N, otra + N2fln )Wj "n

+ #jp sin(_,,rx.0,) cos(#ny.0,) + _blosin(¢mxlp) cos(fl_jo) = 0

(3.29c)

(3.29d)

_1( 3 kT _";_,,w',-_,_,¢, _,

+ _,uI*+-E- +^ _'_ ug. sin(akqa,) = 0

(3.29e)

a,v_+ oT _As flt"-_- + _sflt - _b)_,sin(fltq)_ ) = (3.29o0
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_Ylp:U?_cos(=_jp) cos(p_,jp)- _k cos(=k,ljp)= 0

6/ajp: /4_"n sin(0t,n.rjp) cos(//,,yjp) - W_k sin(=kr/jp ) = 0

6_bjp: V_ n sin(a,rrrjp) sin(,8_jp) - V_t sin(Btnjp) - 0

$¢'Jv: W_" sin(=mxjp ) cos(p..r'jp)- W]t cos(p_jp) -' 0

=0

(3.29g)

(3.29h)

(3.290

(3.29s_

(3.29*)

3.7 Shell/Stiffener Load Distribution

3.7.1 Introduction

The appropriate prebuckling load distribtion as applied to the shell (skin) and the

stiffeners is essential for proper analysis of the stiffened shell structure. In the smeared

buckling analyses the skin and stiffener properties are averaged to form and equivalent

structure and therefore no prebuckling load distribution is necessary. However, for dis-

crete structures the proper distribution of loads applied to the skin and the individual

stiffeners must be obtained. The approach taken here for the prebuckling load distrib-

ution involves using classical lamination theory (CLT) and a smeared load distribution

whereby the stiffeners are considered to be smeared for the sake of calculating the ap-

propriate prebuckling load distributions only similar to the approach used by Phillips
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and Gardal [123] in their study of stiffened plates. The stiffeners will be assumed to carry

only forces along the length of the stiffener. The development of the constitutive

equations presented here follows the approach of Jones [166].

3.7.2 Shell Constitutive Relations

Using CLT for the shell/skin, the stress strain relations in the principal material coordi-

nates for a 2D laminate are

I 066 1

(3.30)

Here the Q,j are the reduced stiffnesses. If the coordinate system is transformed then the

stress-strain relations are given by

(3.31)

m

The Q,j are the transformed reduced stiffness terms. Using the Kirchhoff-Love hypoth-

esis the displacements u and v within a laminate may be expressed as

_1/0 °
IJ == I_ ° -- Z _

Ox

o _W °
P== P --Z_

ay

(3.32)

Ritz Buckling Method 57



Here uo, _, Wo are the displacements at the midsurface of the shell. The subsequent

strains may be expressed as

Yxy =

Ov

@ (3.33)

or

0

(3.34)

where the middle surface strains are

c?u°

ax

av °

Ou °

w °

+.-if-+ av ° (3.35)

and the middle surfacecurvatures

ax2 I

_ O_w_.__°_
(3.36)
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Substituting the strain relations (3.34) into the stress-strain relations (3.31) the stresses

in the k 'h layer of the shell may be expressed as

(3.37)

The resultant forces and moments acting on the shell laminate may be obtained by in-

tegration of the stresses in each layer (lamina) through the laminate thickness. The re-

suiting expressions are

-h oy dz = ay

t.N:>,J -r -,
dz (3.38)

k

''<'''.''7':7 z dz (3.39)

k

where zk and z__ _ are defined in Figure 8. Upon integration through the laminate the

following expressions result
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(3,40)

where

8

(,,:,,B;,D_,): J"__I_,,),<(,,,,:)
2

(3.41)

The superscript s denotes that these are shell(skin) constitutive relations.

3.7.3 Axial Stiffener Constitutive Relations

The effective stiffener spacing 1_ over which the influence a particular axial stiffener has

upon the structure is described in Figure 9 and is given by the expression

2nRt_= _ (3.4z)
xv a

where N,, is the total number of axial stiffeners. The linear strain displacement re-

lationship for axial stiffeners is

a Ou a Oiw *

_x - ax z ax 2 (3.43)

where _ is the smeared axial stiffener strain and u" and w" are the respective displace-

ments of the axial stiffeners. The stress strain relationship is given as
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,  2w,1 (3.44)

where o_ is the smeared axial stiffener stress and Eo is the modulus of the axial stiffeners.

The total force in the stiffener is calculated by integrating the stress distribution in the

stiffener over the area, A°, and is expressed as

(3.as)

The force resultant, N,, is then calculated by distributing the total stiffener force Ff over

the stiffener spacing ix and is written as

E.A,,a.° EoAA[ a'.,"]l;, ax + != ax2
(3.46)

The moment resultant MI, is calculated by multiplying the force resultant N_, by the

distance _', from the neutral axis to the centroid of the stiffener at which the force acts.

Here it is assumed that the forces act at the centroid of the stiffeners. The moment re.

sultant is then

where the moment of inertia Io is
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(3.48)

The set of constitutive relations for the axial stiffeners becomes

Nx _ el o-- A l lG + B_*1Kx

= B ti_x +
(3.49)

where

EelAa

A_,: 6,
EoA:,

Eel(I_+ _/Ao) Eelto
lx Ix

(3.50)

3.7.4 Ring Stiffener Constitutive Relations

The effective stiffener spacing ly over which the influence a particular ring stiffener has

upon the structure is described in Figure 10 and is defined by the relation

L

l, = _ C3.51)

where L is the length of the cylinder and N_ is the number of ring stiffeners. The linear

strain displacement relationship for ring stiffeners is
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c Ovc wc a2w c

_Y - ay + T- z aY 2 (3.52)

where 6 is the smeared ring stiffener strain and v" and wc are the respective displacements

of the ring stiffeners. The stress strain relationship is the given as

= _=E_ a_ _ a_w_]
_ E_ _La_+--a--z --a_J (3.53)

where cry, is the smeared ring stiffener stress and E_ is the ring stiffener modulus. The

total force in the stiffener is calculated by integrating the stress distribution in the

stiffener over the area, A, and is expressed as

fo ..o °= = +"_'-z-- dA c

= E_ + E_,s_:y
(3.54)

The force resultant, Ny, is then calculated by distributing the total stiffener force F_,over

the stiffener spacing ly and is written as

(3.55)

The moment resultant M_,, is calculated by multiplying the force resultant N_, by the

distance _', from the neutral axis to the centroid of the stiffener at which the force acts.
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Here it is assumed that the forces act at the centroid of the stiffeners. The moment re-

sultant is then

M;'-7 T " r gT , (3.56)

where the moment of inertia L is

Ic = I_%+ _'c2Ac (3.57)

The set of constitutive relations for the axial stiffeners becomes

N_y _ c o ca22_y+ Bh,cy

M;- "° @,,B22_y +
(3.58)

where

ly

B_2" eJS_
l,

D22 = T

(3.59)
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3.7.5 Geodesic Stiffener Constitutive Relations

Described in Figure 11 is the coordinate system for the geodesically stiffened shell and

the definition of a single geodesic cell. The effective circumferential length l: is the cir-

cumference divided by the number of cells per shell circumference such that

2rrR

lg- N& (3.60)

where Ns is the number of geodesic cells. The cell length is given by Lv The strains in

stiffener coordinates are

aug
"Tf- -_q

= - z_--_ 2

ad a2_d

a#

(3.61)

where _,, is strain along the stiffener axis, _ is strain transverse to the stiffener axis, y,,¢

is the shear strain, and u_ and _ are the geodesic stiffener displacements. See Figure 4

for the stiffener coordinate system.

The stiffeners 1 and 2 of Figure 11 are oriented at angles 0 and -0 respectively from

the y axis of the shell. Since the stiffeners are not aligned with the shell coordinate sys-

tem, the values in the local coordinate system aligned with the stiffener axes must be

transformed to the shell coordinates. The strains in the local coordinate system aligned

with the stiffener can be determined using the strain transformation relations by Jones

[166]. These are
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_v!t I s2_ c2_ so, co5
-2s$c$ 2s¢c¢ c2,_ - s2¢

(3.62)

where

s$ = sin

c$ -- cos $ (3.63)

The axial strain component for stiffener #1 of the unit cell at angle + _ yields

sin2_ex + cos2_bey + sin _ cos ¢Yxy

=. s24_x + c2tk_y + stbc,by_
(3.64)

The axial strain component for stiffener #2 of the unit cell at angle - _b yields

t:2 sin2( - _b)rx + cos2( - O)ry + sin( - ¢) cos( - O)y_

-- sa¢_ + c2¢_y - s¢c_y.v
(3.65)

The stiffener axial forces Ft and F2 may be found by multiplying the strains _t and _2 by

the stiffener elastic modulus Es and integrating over the area of an individual stiffener

area A r This results in the following exprecsions

_=,= Egf (s2_,x+ c2_,,+ .+.,/,c,/,>,+..,,)dA+
AI

_+= eg_ (++++++ +_+,,- ++++_+)dA,
A t

(3.66)
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Solving for th(_ Force Fx along the circumferential edge involves resolving F_ and F2 into

components along the × direction as indicated in Figure I I.

-- FI sin 4' + F2 sin _b

== Eglf 4 (s3 qb*x + c2¢bs$t.v + s2$ce_Yxv)dA,
&

+ f (s3"x + c2's'_y - s2'c'y_)dA.]
A a

Aa

(3.67)

The force resultant, NL distributed over the circumferential length is calculated by dis-

tributing the force F, over the length 1¢ Distributing the force _ over iz and carrying

out the integration of Eq. (3.67) yields (constant cross sectional area)

2_A, 2_A,

+" t_ s%,cx+ tg c2_s¢'_'y

(3.68)

where for a constant cross sectional area

za = Z zdA& (3.69)
|

A similar procedure is used to calculate the force resultant N_ along the lengthwise edge

and produces the following result
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2_A_ 2EeA_
Lg s2¢c4_x + _ c3ev_Y

2 E_.4_=.g 2 EgA g_
+ s2Ocdvrx +

L_ L_

(3.70)

To determine the shear force resultant, the forces tangential to either the circumferential

or lengthwise edges will produce eigenvalue results. The tangential force components

along the edge are £'1 cos _ in the positive y direction and F2 cos _b in the negative y di-

rection. Substituting for FI and F_ of Eq. (3.66) yields

_y -- & cos_ - F_cos_,

-- E,IfA + + s,c2,,.)da,
l

At

•,'A z

(3.71)

Distributing the force F_ over the length Iz and integrating Eq. (3.71) yields the shear

force resultant

2EgAg 2EgA_g

N_ ,," ls c2¢sqSy_ + 18 cl¢_sckr_ (3.72)

The loads acting upon the stiffeners are offset by an amount _'s. Thus, moment result-

ants are introduced into the problem. The resultant moment M! may be calculated by

multiplying Eq. (3.67) by z and distributing over i_ which yields
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r rS ,c /_Ay = .Ay+Ay+

A'_y= A'_ 'gxy + #\xy

_= _+_+_

_ = _ +_ +_ (3.79)

The stiffness terms (A, B, D) are then

A_2 = A_2+ A_2

At6 = A_6

A26 = A_6

A22 = A_=+ A_2+ A_2

A66 = X_6+ X_6

BI_ = B_6

B26 _ B_6

D_ = D_1 + D_, + Dt_t

D_2 = O_2 + Ot_2

Die -- D_6

D_ -" D_ + D_ + L)_

(3.80)

It is assumed that the skin and stiffeners have identical strains.

equations for the shell (skin)/stiffeners are:

The constitutive

(3.81)
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3.7.7 Loading Conditions

Four different loading conditions will be considered for the solution of shell/stiffener

prebuckling load distributions; axial compression, pressure loading, applied shear

(torsion), and applied end shortenings. In this study only buckling due to axial com-

pression and/or pressure loading will be considered. The other two loading conditions,

torsion and applied end shortening, are included for completeness and can be included

in future work including calculating the prebuckling load distributions for a finite ele-

ment analysis. Load distributions for combinations of the above loading conditions such

as for example axial compression and pressure loading may be obtained via the super-

position of two or more load conditions.

3.7.7.1 Case 1 - Axial Compression (Applied Nx)

For this case it will be assumed that the prebuckling Nj, = Nn, = O. Further, due to the

offset loads acting at the stiffeners" centroid, a resultant moment is developed. An ap-

plied Nx may be reacted by either axial or geodesic stiffeners. Thus, the resulting mo-

ment is

(3.82)

The resulting offset moment in terms of strains is

(3.83)

Substituting Eq. (3.83) into Eq. (3.81) reduces the constitutive equations to
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rAlAI2A6] I = IA_2 A22 A26

LA_6 ,424 :I66 kyxy,,

+ I,261 )B12 B22 B26/ Ky

BI6 B26 B66J

(3.84)

The set of equations, (3.84), will be solved using a Gauss elimination procedure for

_, e_,, )_j,, xx, _j,, K,,,. The solution for the skin force resultants is then

N_ 1. 0 $ 0 $ 0 1.---- Allt.x + Al2ty + AI6Yx), + Bllr.x + B_2Ky + Bsl6Ky

N; _ 1. 0 1. 0 $ 0 1. $ 1./12tx +/22_y +/26Y._ + BI2Kx + B_2_:_,+ B_6Ky

JV_ :m 1. o 1" o 1. o,416_x + A26e>, + A66)'_ + _6rx + _6_cy + + B6_xxy

(3.85)

The resultantforce in the axialstiffeneris

N_ a o (3.86)

and the force in each axial stiffener is

(3.87)

The resultant force in the geodesic stiffeners is

Nx8 & o & o B_II Kx= AI:-_ + AI:j, + + _2_:y (3.88)

and the force on the the geodesic stiffeners is then
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tgN (3.s9)
FI = F2 - 2s--_ = 2s_

It is assumed that the ring stiffeners do not carry any loads when the shell is subjected

to axial compression so F_--0.

3.7.7.2 Case 2 - Pressure Loading (Applied Ny)

For pressure analysis the value of Ny- -pR where p is the external pressure. If internal

pressure is applied then N>,= pR. For this case it will be assumed that the prebuckling

N_ = N_, = O. Due to the offset loads applied to the stiffeners this results in an applied

moment resultant. This moment resultant is created because of the offset force result-

ants acting on the ring or geodesic stiffeners acting at the centroid and may be expressed

as

(3.90)

The resulting offset moment in terms of strains is

(3.91)

Substituting Eq. (3.91) into Eq. (3.81) reduces the constitutive equations to
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(3.92)

The set of equations, (3.92), will be solved using a Gauss elimination procedure for

:_, E?,, _,_y, _:x, _<j,, _:,y. The solution for the skin force resultants may be found from Eq.

(3.85). The resultant force in the ring stiffener is

== C O CA2:y + B22_y (3.93)

and the force in the ring stiffeners acting at the ring stiffener centroid

(3.94)

The resultant force in the geodesic stiffeners is

N; _- g o g oA2t_x + A22_y + _lKx + _2_cy (3.95)

and the force on the the geodesic stiffeners is then

:, LgN;.
m

F1 = F2 = 2c_ 2c_ (3.96)

The axialstiffcnerscarry no circumferentialload and hence Fg ==O.
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3.7.7.3 Case 3 - Shear Load (Applied Nxy)

In this case a state of applied shear loading, N_y, exists. For this case it will be assumed

that the prebuckling N, = A_, = O. The applied offset moment resisted by the geodesic

stiffeners is then

Mxy--- _'&N_ (3.97)

The resulting offset moment in terms of strains is

- g o (3.98)

Substituting Eq. (3.98) into Eq. (3.81) reduces the constitutive equations to

(3.99)

The solutions of Eq. (3.99) for cO, e_,, yb, g_, Kj,, and _:_r may be substituted into Eq.

(3.85) to find the skin resultant forces. The solution for the skin force resultants may

be found from Eq. (3.85). The load distribution in the geodesic stiffeners may be found

from the following expressions

(3.lOO)
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F_ -- -F 2 - 2c4_ (3.101)

The axial and ring stiffeners carry no shear loads and hence F,* = 0 and F_ ---0.

3.7.7.4 Case 4 - Applied End Shortening

In this case the strain, t0, must be calculated from the applied end displacements A such

that

o A (3.102)
£X _ T

The solution will involve solving for Nz as an unknown rather than e*. It is assumed that

in the prebuckling state Ny, N_, My, and M_ are all zero. The offset moment will be

given by Eq. (3.83). Substituting Eq. (3.83) into Eq. (3.81) and rearranging to solve for

Nx as an unknown with e_ known yields the following equation
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+ D21 D22 D261 _y

D i6 D_6 D66]

(3.1o3)

The set of equations, (3.103) will be yield _t, c_,, yty, rx, _9, s<xy. The solutions and the

known _,_ may be substituted into Eqs. (3.85)-(3.89) to calculate the appropriate forces

in the skin and stiffeners.

3.8 Governing Equations and Final Form

The set equations of 3.29 representII setsof equations which may be writtenin matrix

form as

[K1_xil](a} = ;¢[M_lxll] (3.104)

The nonzero elements of the stiffness and mass matrices of Eq. (3.104) are provided in

Appendix B. The stiffness matrix of Eq. (3.104) is sparse and thus in this study the

eigenvalue problem will be solved in terms of the shell (skin) displacements U, V, and

W. The Lagrange multipliers, y_,,/x_, _a, and _,, are eliminated from the problem by

expressing these terms as functions of U, V, and W.

equations the following eigenvalue problem results

After reducing the 11 x 11 set of

[S,33 [S23] [$33] ] [_W}_ [0] [0] [M33]

(3.105)
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where

[S_l] = [KI _]+ [K_.8][K4.s]-I [K_]EKs.4]-I [Ks. I]

[$12] = [K_2]

[s_3] = [K_3]+ [K_.g]EK,._]-_[KjEKg. s]-_EKg.3]

ES:_]= EK:_]

[S22] = [K2_] + [K2.to]E_.,o]-'[&6]EK_o.6]-_[K_o.:]

[S:3] = [Z<:3]+ [/<:. Io][_. Jo]-_[/_7][/<tl.7]-'[/<_1._]

[S3,] = [Zq_]+ [K3._]EEs,9]-'EA'5_IEZq,_I-_[A'a.I]

ES3:]= [I<3:]+E/<3.1,]EKT._]-'EK76][K,o,6]-'EK_o.:]

[S33] = [/_33]+ [K3.9][Ks.9]-_[E_]EIG.s]-_[_,3]

+ [K3._][/<_._]-_[g_][E_.:]-'[K_,3]

(3.lO6)

The solutions of Eq. (3.105) yields the eigenvalues ,L,. for each mode M, N and the

minimum eigenvalue isthe criticalbuckling load.

In thisdevelopment the out-of-planeand torsionalstifrnesses of the beams were neg-

lected. However, both the transverseand the in-plane displacements were constrained

between the shellskin and the stifrcners.In many similaranalyses only the transverse
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displacementswere constrained [118-123] and reasonable results were achieved. More-

over, this development is just an initial study of the buckling of stiffened shells using the

layerwise theory and an analytical approach. The results shown in Chapter S reveal that

this method does work well. Hence, including the out-of-plane and torsional stiffness

of the stiffeners may in fact overstiffen the structure as developed in this chapter. This

could yield poor results when compared with other analyses. The majority of this re-

search involves the development and the use of the layerwise finite element method de-

scribed in Chapter 4. Consequently, it was decided to concentrate more upon the finite

element method and analyses rather then to include every minute detail into the analyt-

ical buckling approach. Including the out-of-plane and torsional stiffnesses of the

stiffeners can be included in the future.
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Chapter 4

Finite Element Formulation

4.1 Introduction

Displacement based finite element models developed from the governing equations pre-

sented in Chapter 2 are derived for both layerwise shell and beam elements. The

layerwise theory reduces the equations of three-dimensional elasticity to a quasi three-

dimensional laminate theory by assuming a layerwise approximation of the displace-

ments through the thickness. Consequently, the strains are different in different layers.

The interlaminar stresses (a**, ay,, a**) will be calculated using information from the in-

plane stresses calculated from the finite element solution and by using an approximate

technique to integrate the equilibrium equations. The variational statements of Appen-

dix A and Eq. (2.23) are used in the development of the finite element models. In addi-

tion, the derivation of the direct stiffness and tangent stiffness matrices are presented.

The finite element method for plates and shells is discussed in Refs. [32, 41-59, 125-142,
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163, 167-170]. Several example problems are included in this chapter to verify the finite

element program.

4.2 Layerwise Shell Finite Element Formulation

The generalized displacements (uj, vj, w:) for the shell elements are expressed over each

element as a linear combination of the two-dimensional interpolation functions ¢," and

the nodal values (u_", vr, w)') as follows

NDS

(.:,.:, .;, ,q)¢ (4.1)
PlII

where NDS is the total number of nodes per element. Substituting Eq. (4.1) into the

variational statement of Appendix A yields the shell finite element model. A geometric

description of the finite element shell model is shown in Figure 12a. The elemental finite

model for layerwise shells may be expressed as

n L w]J LiP,]J
(4.2)

where Kfl", K["/', etc. are the element submatrices provided in Appendix C, {U), {V}, and

{W} are the column vectors of nodal displacements, {Fz}, {FA, and {F,} are the column

vectors containing the boundary and force contributions.
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Figure 12. Geometry of the finite element model: a) shell element; b) beam element.
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Three types of finite elements are developed in the finite element program. These are

linear (4 nodes), Serendipity (8 nodes), and Lagrange (9 nodes) elements. Figure 13

shows these three types of finite elements. In this study the isoparametric rectangular

master clements ate used. The interpolation functions for these elements are listed be-

low.

Linear Element ( NDS = 4 )

l
¢i(_, n) = -_-(l - _)(1 - 7)

!

I
_3(_, ,I) = E

I
_4(_, n) =

(t + _)(l-_)

(l + _)(I +7)

(t - _)(l + ,_)

(4.3)

Serendipity Element ( NDS = 8 )

¢2(_, q) _ _-(l + {)(t - 7)( - t + { - 7)

¢3(_, 17) -" 1(1 + _)(1 + 17)( - 1 + _ + )I)

_'({, )7) =, l(1 - _)(1 + )7)( - I - { + 17)

¢s(_, _). +(l - _2)(t - _)

1
¢j6(¢, ,1) - T (t + _)(l - ,y2)

1
¢,7(_, ,7) - T(l - _2)(t + _)

(t - _)(t - _)¢s(_, _)= T

(4.4)
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Lag, range Element ( NDS = 9 )

I
_(_, ,l) -- W'(_ 2 - _)()z2 - ,z)

I
¢?(_' _1 = "T (¢2 + _1(2 _ ,_1

¢/(_, ,r) = + (_2 + _)(,t2 + ,7/

0'(_, ,I) = + (_2 _ _)Or2+ ,7)
I

0s(_, )7)= T(t - _2)(,12- ,71
I

_6(¢. ,1/= T(_ 2 + ¢1(1 - _21

1
_bT(_, r/) = T(1 - _2)(r/2 + )r)

I
¢js(_, _1 = T(_ 2 - _)(I - ,7_1

09(_, ,1/= (1 - _21(1- ,1_)

(4.5)

4.3 Layerwise Beam Finite Element Formulation

The generalized displacements (u_, wj) for the beam elements are expressed over each el-

ement as a linear combination of the one-dimensional interpolation functions Or. and the

nodal values (_, w]/as follows

NDS

(uj, wj)= ZCu_, w]lqJ n (4.6/
n,,=l
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13. Node numbering and coordinates rot Linear, Serendipity, and Lagrange shell finite elements.
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where NDS is the total number of nodes per element. Substituting Eq. (4.6) into the

variational statement of Eq. (2.23) yields the shell finite element model. The elemental

finite model for layerwise shells may be expressed as

kr: k "J -- {ie /j
(4.7)

$ $

where Kfl", Kff', etc. are the element submatrices provided in Appendix C, {U} and {W}

are the column vectors of nodal displacements, {F,} and {F_} are the column vectors

containing the boundary and force contributions. See Figure 12b for a description of the

layerwise beam element geometry.

Three types of finite elements are developed in the finite element program. These are

linear (2 nodes), quadratic (3 nodes), and cubic (4 nodes) elements. Figure 14 shows

these three types of finite elements. In this study the Lagrange family of master elements

are used. The interpolation functions for these elements are listed below.

Linear Element ( NDS = 2 )

_ -- _(1 - _)

1
¢,:= T(I+_)

(4.s)
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Quadratic Element ( NDS = 3 )

¢2=(i + _)(l- _)

¢3 l= T_(l + _)

(a.9)

Cubic Element ( NDS - 4 )

#t 9 + 1= - l-T (l - _)( + _)(T - _)

_2 = 271_=_(l + _)(l - _)(._=l __)

¢j3 27 1= -iT Cl + _)(l - _)(T + _)

l _)(+_?= - q_'(T + - _)(l + _)

(4.1o)

4.4 Assembly and Nonlinear Analysis

The layerwise shell and beam elements are assembled directly into the global stiffness

matrix which yields the following sets of equations

[K(A)]{A} - {F} (4.11)

such that

[g(a)] = (EK_ + cgNtca)]) (4.12)

where [K(A)] is the assembled global stiffness matrix, [K_ and [KNL(A)] are the linear

and geometrically nonlinear parts of the global stiffness matrix respectively, {A} is the
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Figure 14. Node numberin I and coordinates for Linear, Quadratic, and Cubic beam finite elements.
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column vector o£ nodal displacements, and {F} is the column vector of boundary or ap-

plied force conditions. The system of equations represented by Eq. (4.11) can be solved

directly for linear problems. However, for geometrically nonlinear problems the stiffness

matrix is a nonlinear function of the unknown solution and must be solved iteratively.

The method selected here for solving geometrically nonlinear problems of stiffened plates

and shells is the Newton-Raphson method. In the Newton-Raphson iteration method,

the basic equations for the residual vector {R} is given by the expression

{R} - EK(A)]{a}- {F} = o (4.13)

Assuming that the solution is known at the r t* iteration, the residual vector {R} is ex-

panded in a Taylor series about {A'},

a{a}
o = {R}, + a(a} {_a}, + ...

= ([K(_')]{A'}- {_) + [K_(Ag]M,_I
(4.14)

where the tangent stiffness matrix [Kr'J is given by

[K_(a3]. [ o{R} (4.is)

The tangent stiffness matrices for layerwise shell and beam elements are presented in

Appendix C. The final equation to be solved for the increment of the solution {6A'} is

[K_(a')]i6a3-{m (4.16)

The total displacement at the (r + 1)'* iteration is given by
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(4.17)

The convergence criteria used to determine when the iterative solution stops is

Ar+1_A_J 2

l--I

< EPS (4.18)

If applied displacements rather than applied forces are specified for a particular problem

then the total loads at the (r + 1)'h iteration is given by

{e'÷'} = {el + { eq (4.19)

The subsequent convergence criteria is then

igl

.w ....

l=,l

Ees (4.20)

where I is the number of nodes at which the applied displacements are not specified.

A geometric explanation of the Newton-Raphson technique for a one-dimensional

problem is provided in Figure 15.
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Figure I$. Newlon-Rnphson method o1"a one-dimensional problem with tanl_ent stiffness matrix at each
iteration.
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4.5 Beam Element Stiffness Transformations

Beam elements may be oriented at any arbitrary angle a from the x axis of the shell as

shown in Figure 16. The translational degrees offreedom of the beam u' and w' are re-

lated to the displacements in the shell coordinates u, v, and w by the following vector

relationships

u' = ucosa + vsina

v' = -usina + vcosa

W_=W

(4.21)

The stiffness transformation relation may be expressed as (see Cook [170] )

[K,] = [T]r[K',][T] (4.22)

where [K,] is the transformed beam stiffness matrix, [T] is the transformation matrix,

and [K',] is the stiffness matrix to be transformed. For example, the beam node local to

global coordinate transformation matrix is

[To 3 ] = - a ca
0

(4.23)

where

sa : sin a
ca : cosa (4.24)

The stiffness matrix to be transformed is
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^, (4.2s)[ K'_ O_3)'1 = K ,,

[x'_, 0 x'2:J

where K'tl represents the in-plane stiffness. K't2 and K'2t are the shear stiffnesses. K'u

^

is the transverse stiffness, and K',, is the out-of-plane stiffness.

In this research the stiffeners are thin (0.2") and an approximation of the out-of-plane

stiffness is made based upon the ratios of the out-of-plane moment of inertia, I,, with

the in-plane moment of inertia, Ic. See Figure 12b for a description of the beam element

and the geometry. The out-of-plane stiffness is then developed as

,, I_

/('11 == _'K',I

^ b 2

K'jl- --_-K'lz

(4.26)

hb 3
bh----_-3and I,--_.whereI t= 12 12

Carrying out the matrix multiplications as defined by Eq. (4.22) yields the following

transformed stiffness matrix

I 2. ^ A^ !

(K',,s_,+/(',,c20,)K',2s_{rK, o_a)'l " [(l(',,c_,sot- K',,c_s,,) 2 "

[_ K'21 c_ K'ml s_ K'22 J
(4.27)

Each node in the beam will transfer in the same manner as that presented in Eqs.

(4.21.4.27).
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Figure 16. Representation of'the beam displacements (u', v', w') to shell transformation shell displace-
ments (u, v, w).
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4.6 Interlaminar Stress Calculation

In this study an approximate technique is used to integrate the equilibrium equations

by using the in-plane stress information provided by the finite element solution. The

technique presented by Chaudhuri and Seide [171] is extended here to quadrilateral

isoparametric elements. The work of Reference [171] is derived for interlaminar shear

stresses and was also adopted in the work by Barbero and Keddy [172]. The authors of

[172] obtained the transverse shear stresses using derivatives of in-plane stresses that

were calculated by differentiating the interpolation functions of a finite element approx-

imation based on a generalized laminated plate theory. The work presented in [171,172]

will be extended to both transverse shear stresses (o_,,, oj,,) and the transverse normal

stresses a,, for layerwise shell elements. Additional references on calculating

interlaminar stresses may be found in [173-175].

In this study the interlaminar stress distribution through each layer is approximated with

a quadratic function requiring 3N equations for each of the interlaminar stresses

(ax,, ay,. ou ) where N is the number of layers; N equations are used to satisfy the N

average shear stresses on each layer. Two equations are used either to impose vanishing

shear stresses at the top and bottom surfaces of the shell or for the interlaminar normal

stress a,, = p, on the surfaces. If there is no applied p, on one or both surfaces then

o,, = 0. Then, (N - 1) equations are employed to satisfy continuity of the stresses as

the interfaces between layers. The remaining (N - 1) equations are used to compute the

aaxz ao_, oat,

jump in az ' Oz ' or _at each interface.

The average stresses on each layer are computed from the constitutive equations and the

displacement field obtained in the finite element analysis.
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The equilibrium equations for a cylindrical shell are

aaxx I aaxy aOxz
+ + -o

ax R ay az

I aoyy aoxy aoy z

'g-Ty +-_ + a_ -o

_"_"(a_ aw Oyy 1 a Oyy aw-_;)-W + _, _ ( _ -_:)
1 aoyz aOxz 1 a Ow

+ R 03: +"'_x + R Oy (a_'_'x)

O axy Ow. Ooz2
+ "_; ( ROy )+-__ +po=°

(4.28)

The equilibrium equations for a flat plate reduce to

aOxx OOxy + °°xz
+T o, =o

Ooyy OaT O_yz

-ff-_+-_-_ +T:o
Oa,,z Oayz Oa,_

ox +'-ff-_+T +po--0

(4.29)

Here the equilibrium equations are used to compute
O(Txt O0.vt

aZ t OZ

OOaz

, and _ directly

from the finite element approximation. The components of the stresses and their deriv-

atives are computed from the constitutive equations for each layer. The procedure re-

quires computation of the second derivatives of the displacements (uj, v_, wj) are presented

in Appendix D.
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4.7 Finite Element Verification Analyses

4.7.1 Introduction

Several representative problems are analyzed using the previously derived layerwise ele-

ments and solution procedures. Some of the problems have analytical solutions or the

analysis has been presented in the open literature by using different finite element mod-

els. Comparisons of the present results with published solutions, where available, pro-

vide a check for the accuracy and applicability of the layerwise elements developed for

this research work. Although additional analyses were performed only a selected group

of representative sample problems are presented here.

4.7.2 Unstiffened Plates and Shells

1. Orthotropic Clamped Cylindrical Shell

A comparison of the center deflection of an orthotropic clamped cylindrical shell sub-

jected to internal pressure as shown in Figure 17 is presented in Table 1. A comparison

is made with the finite element solutions presented by Reddy [167] and Rao [176] and the

analytical solution presented by Timoshenko and Woinowsky-Krieger [61]. A 2x2 mesh

of 9 node layerwise shell elements was used for this analysis. The layerwise finite ele-

ment results yield a good correlation with the published solutions.

2. Cylindrical Shell Roof Under the Action of Self-Weight
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R - 20 inches

L- 20 inches

Po " 6.4/z psi

Figure !?. A clumped cylindricaJ shell subjected to internad pressure.
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This problem as shown in Figure 18 was solved using conventional techniques by

Scordelis and Lo [177]. This particular cylindrical shell problem has been used fre-

quently to assess shell finite element performance [45, 178-181]. The shell is supported

on rigid diaphrams and is loaded by its own weight. This is a test case ofthe application

of the full process to a shell in which bending action is severe due to the supports re-

straining deflection at the ends. In Reference [178], the authors showed that using fully

reduced integration yields more rapid convergence and better accuracy than selectively

reduced integration on the transverse shear terms only. The results presented in Figures

19 and 20 are for layerwise shell elements with fully reduced integration and using lxl,

2x2, and 3x3 meshes 9 node elements. The layerwise elements produce excellent corre-

lation with the analytical solution of Reference [177].

3. Center Deflection of a Simply Supported Orthotropic Cylindrical Roof

The geometry, boundary conditions, material properties, and results for the simply sup-

ported orthotropic cylindrical roof is shown in Figure 21. The nonlinear results were

developed from the Newton-Raphson procedure discussed in Section 4.5. The results

are in good agreement with the results presented by Palmerio [182].

4. Center Deflection of a Simply Supported 0/90 Cylindrical Roof

The geometry, boundary conditions, material properties, and results for this problem are

found in Figure 22. The Newton-Raphson technique was employed to acquire the

nonlinear results. The results agree well with the work by Palmerio [182].
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Fi|ure 18, An isocropi©cylindricsl liheli root"under selr-weiiht.
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Boundary Conditions :

u - Oatx = 0

v - Oaty = 0

v = w = Oatx = L,-L
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.------- Nonlinear Results[
..... Linear Results I
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Figure 21. Simply supportedorthotropiccylindricalrcN0r.
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Boundary Conditions :

U " Oatx - 0

v - Oaty - 0

v- w - Oatx - L,-L

u = w - Oaty - $,-S
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Nonlinear Results
.... Linear Results
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Center Deflection (in)

Figure 22. Simply supported101901cylindrical roof.
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5. Stress Anal_?sis of a Simolv Supnorted [0/90,'0] Plate

The plate being studied is loaded with a uniformly distributed transverse load. The plate

boundary conditions and material properties are described in Figure 23. The plate is

simply supported on all four sides and due to symmetry only a quarter of the plate is

modeled. A 4x4 mesh of 9 node elements are used in this analysis. The through the

thickness distribution of the inplane normal stress, axe, for an aspect ratio ofa/h = 10,

is shown in Figure 24. The stresses were computed at the Gauss point x = y = 0.0528a.

Figures 25 and 26 contain similar plots of the interlaminar shear stresses _,z and _,,,

respectively. In Figure 25, _y, is computed at the point x -- 0.0528a and y = 0.9472a.

In Figure 26, _',z is computed at the point x = 0.9472a and y = 0.0528a. In these plots,

dashed lines represent stresses obtained from the constitutive equations, while the

smooth solid line represents the stress distribution obtained using the equilibrium

equations as developed in Section 4.6. Stresses obtained using the LWTR, the FSDT

(first order shear deformation theory) are also compared in these plots. The transverse

normal stress, _, obtained from both the constitutive and equilibrium equations is

shown in Figure 27. The transverse normal stress is obtained at the Gauss point x = y

-- 0.0528a. Modeling each layer in the composite plate as several layers may serve to

increase the agreement between the LWTR equilibrium and the LWTR constitutive re-

sults.

4.7.3 Beam Structures

1. Cantilever Beam Subiected to an End Load

The beam dimensions and properties used in this analysis are found in Figure 28. The
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U,=w,=O

r I

v=O

w--O

"= xr

[0/90/0] Simply Supported Plate

El= 18.5 x 1Ca psi

Ez = E3 = 1.64 x 1 "Spsi

G12 = G13 =" 0.87 x 1C5psi

Gz3 = 0.54 x 10 ° psi

V12 ==V13 ==0.30

Vz3 = 0.49

Fi|ure 23. Simply supportedIO/QO/OIsquare plate subjected to a uniformly distributed loud.
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Figure 24. Throulh-cbe-_hickness distribution or the in-plane normal stress ;., ror • simpi)' supported,
IO/9O/Ollaminated squ•re plate under uniform load, (•/h - I0).
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------- LWTR EGUII.

-- -- LWTR CONST.
I _ -,--- FSDT CONST.
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Interlaminar Stress °yz

O'y zI

Figure ?..S. Throullh-the<hicknessdistributionof the transverse shearstress;n for • simplysupported,
10/9o/01laminatedsquareplate underuniformload,(a/h - !0).
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Figure 26. l'hrouzhqhe-lhlcknes.q distribution of the tritnsverse sheitr stress ;.I for it simply supported,
10/90/01 laminated square plate under uniform load, (it/h " I0).
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Figure 2"/. Through-the<hicknes.q distribution of the transverse normal strm ;u for • simply supported,
101qo/01laminated nquare plate under uniform load, (_/h " 10).
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linear results for this analysis are presented in Table 2 and good correlation exists be-

tween the finite element and the classical solutions.

2. Cantilever Beam Subiected to a Uniform Load

The beam dimensions and properties used for this example problem are shown in Figure

28. The linear results for this analysis are presented in Table 2. The linear finite element

results compare well with the results from classical beam theory. The large deflection

analysis of the cantilever beam subjected to a uniform load is presented in Figure 29.

These results compare well with the results presented by Liao [183].

4.7.4 Stiffened Structures

1. Analysis of a Stiffened Plate with Eccentric Stiffeners

This problem shown in Figure 30 was analyzed by Liao [183]. Analyses were made using

both 2 and 4 layers for the plate and 2 beam layers. Reduced integration was used for

the transverse shear stiffness terms. The results of this problem are shown in Table 3.

The LWTR finite element results compare well with the finite element results presented

by Liao and with classical beam theory.

2. Cantilever Plate with Symmetric Stiffeners

The geometry, material properties, and loading condition of the cantilever stiffened plate

are shown in Figure 31. The results obtained are compared with the finite element re-
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E- 1.2x 1(_ psi

v . 0.2

F'i|ure 28. Cantilever beam subjected to two different Ioadin| conditions: a) applied end load; b) uni-formly distributed load.
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Table2. LinearResultsfor a Clamped Beam Subjected to an Applied End Load and to • I_.;formly
Distributed Load (E " 1.2 x 10", v ',' 0.2, L " 10 in.)

L_(k_g L_d LWTR (FF.A) OamcaJ Beam The_xy

0n:_es) (_rx:.,s)

End Load P - 1 I_. -0.334694 -0.333333

DistJlx_ed Load q- 1 l:./'m. -0.125691 -0.125000
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F'isure 29. l_u'|e deflectionora cantileverbeam under• uniformload (g - 1.2 x i0a psi, v u 0.2, b
- 10 in.).
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suits obtained by Liao [183] and are provided in Table 4. A good comparison exists

between the two finite element solutions.

3, A Square Plate Resting on Elastic Edge Beams and Supported at the Corners, Sub-

jected to a Uniformly Distributed Load

Figure 32 shows the plate geometry and material properties. The same problem was

solved by Timoshenko [61] who assumed that the elastic edge beams are ofzero torsional

rigidity. Liao [183] also solved this problem using a finite element technique. The results

are obtained with a 2x2 mesh of 9-node shell elements and four 3-node elements are

displayed in Table 5. Results compare favorably with those of Liao.

This concludes the finite element verification analyses. The next chapter deals with the

buckling and stress analysis of stiffened composite shells, with emphasis on geodesically

stiffened cylindrical composite shells.
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Filure 30. Cantileverstiffenedplate subjectedto in endload.
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F'i|ure 31. Cant_ever stiffened plate with symmetric stiffeners.
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Table4. TransverseDeflectionof'aCantilever Stiffened Plate with Symmetric Stiffeners.

l

um (1987) LWTR(Fe_)

(am) (_)

4X4 _ -0.18103
lZ Beam

-0.18482 (2 layers)

* Tr'armmrse Deflection at the Loaded
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Figure 32. A squareplaterestingon elasticed|e beams.
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Table S. Transverse Deflection of an Elastically Supported Plate Subjected to a L:niforml._ Distributed
Load.

Mesh l.Jao (1987) LWI"R (FEA) 11moshenko

(inch=) (inches) (inches)

2x2 Shell

8 Beam

-0.095957 -0.097258 (Z layers) -0.1 zozgo

-0.1021S2 (4 layers)
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Chapter 5

Results

5.1 Ritz Buckling Results

In order to validatethe LWTR for discretelystiffenedshells,some numerical resultsare

needed. Before the LWTR isused to generate resultsfor discretelystiffenedshells,nu-

merical resultsfor certainknown configurationsare generated and compared with the

published solutions.A comparison of buckling resultsfor unstiff'enedcircularcylindrical

shellswith simply supported boundary conditionsare presented in Table 6. The results

of the LWTR are compared with an analyticalsolutionfirstfor an isotropicaluminum

circularcylindersubjected to axialcompression. Also, in Table 6 a comparison of the

nondimcnsional buckling load for the LWTR, first-ordershear deformation theory

(FSDT), third-order shear deformation theory (HSDT), and classical lamination theory

(CLT) for various cross-ply circular cylinders is presented. Results for the FSDT,

HSDT, and CLT are from the paper by Khdeir, Reddy, and Frederick [185]. Results for
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the LWTR analysis compare well for isotropic and cross-ply unstiffened circular cylin-

drical shells as can be observed from Table I,

Next, a study of a, geodesically stiffened quasi-isotropic [ -45/45/90/0]s plate subjected

to axial compression was made. The geodesically stiffened plate was presented in the

work by Phillips and Gtirdal [123]. They used a Lagrange multiplier approach to

discretely attach beam-like orthotropic (isotropic) stiffeners to the plate and classical

lamination theory to model the plate skin. Also, they conducted a finite element analysis

of the plate using 9-node combined membrane and quadrilateral elements for both the

skin and stiffeners. The stiffened plate was comprised of symmetric stiffeners with

stiffener heights of 0.5", 0.75", 1.0", and 1.25". A description of the plate geometry and

the applied loads is shown in Figure 33, The boundary conditions were chosen so that

u= w=Oaty-_O, Ly

v-- w-- 0 at x z O, Lx

(L x = 80in., Ly -- 28in.)

(5.1)

The Ritz solutions which satisfy these boundary conditions are

Plat.__.__e

u_= U_" cos(_m_x) sin(flO,)

vt " //_"l"sin(a,,x) cos(fl,,y)

w_ -- W_" sin(a,:') sin(p,y)

;-- l, 2, ... ,(_ + l)

; _m- Ly ' fl"= Lx (5.2)

where Up", Vp", and Wp" amplitudes are to be determined for each mode (m, n).
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Geodesic Stiffeners

1 t"ik cos(at,x) ; ak-- krt i= 1, 2, TUs= _s -"7", ....
Ls (5.3)

I lk
ws - W_ sin(_')

The procedure used to develop the buckling equations is exactly the same as that de-

scribed for shells. Material properties for the plate and stiffeners are presented in Table

7. Using the same geometry and loading a comparison of the buckling results is pre-

sented in [123] and the LWTR for discretely stiffened plates is shown in Table 8. The

LWTR compares well with the finite element method, and seems to produce better re-

sults than the Lagrange Multiplier Method (LMM) of Phillips and Gilrdal, especially

at lower stiffener heights. One reason for the difference between the buckling loads ob-

tained from the finite element method and the LWTR discrete method could be that for

smaller stiffener heights the finite element (plate) stiffeners have more of an effect on the

skin than does the LWTR. This results in higher finite element buckling loads at lower

stiffener heights.

Next, buckling analyses of quasi-isotropic [ -45/4519010]s circular cylindrical shells with

eccentric axial, ring, and geodesic stiffeners were conducted. The material properties

used for these analyses are the same as those found in Table 7. A nominal shell radius

of 85" and a shell length of 100" were selected. A shell thickness of 0.2" and a stiffener

thickness of 0.2" were used. These same dimensions were use by Gtirdal and Gendron

[186] in their design optimization analysis of geodesically stiffened shells. Comparisons

of the discrete LWTR approach with the smeared CLT method proposed by Jones

[90,911 and the smeared LWTR method of geddy [371 were made for axial and ring

stiffeners.
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Table 6. Unstiffened Buckling Results.

Buckling of a ._rnl_y SuDoor_ed Unstiffenecl Aluminum Circular Cyi,nder

Subjectecl to Ax,al ComDresseon

Buckling Load Roark [184]
(lib./inch)

8uckle_g Load LWTR

(Ibs./inch) Error

6408.29 6106.10 4.9S%

6
E - lOx 10

v= 0.30

tt_'kness - 0.30"

Buckling of Unstiffenecl Coml_s_e Cylinders

Commnson of Layerw_se t.Jma_te Theory of Reddy (LWTR) wath Theories of Ref. [10S]

- 2
NL

(LJR- 1, R/h-lO). _- --

100 h3 Ez

Lammat_ Theory _1 Skrnl_ Sum)fred

0%00

0o/90o/0 o

LWTR 0.1523

HSOT 0.1687

FSOT 0.1670

CLT 0.1817

LWTR 0.2814

HSDT 0.2794

FSOT 0.2813

CLT 0.4186

LWTR 0.2728

HSOT 0.2896

FSDT 0,2898

CLT 0.339S

HSDT - H=oher Order Shear Deformatmn Theory (ttWd-order)

FSOT - Firlt-orOer Shear Defownatmn Theory

CLT - C_scat Lamnatmn Theory

E/E z- 40. Glz=G+3-O.EE _. Gzz=O.SE z. vlz = 0.25
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Table 7. Material Properties Used in the Stiffened Buckling and Finite Element Analyses.

Properties

Et
E2
E3
G_2

G_3

G23
Vl2

Vl3

V23

Xr
Xc
Yr = Zr
Yc= Zc
R
S--T

ply thickness
ESTIFF
stiffener thickness

Values

18.5 x lOC'psi
1.64 x 106psi
1.64 × 106psi
0.87 x 106psi
0.87 x lOGpsi
0.54 × 106psi
0.30

410.._0
0.49
182.8 × 103psi
210,5 × 103psi
27.2 x 103psi
17.6 x 103psi
13.5 x 103psi
21.75 × i03psi
0.005 in./ply
18.5 x 106psi
0.20 in.
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Figure 33. Geodesically _ifTened panel for verification of' the LWTR amdysls: a) panel geometry; b) fi-
nite element mesh.
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Table8. Analysis of ['-4S/45/90/0]s 0.2" Thick Plate with Geodesic Stiffeners Subjected to Axial
Compression/V, (Lx " 80", Ly - 28", J2 StilTcners).

SUffuner
H_t

0nc:h.,)

0.5

0.75

1.0

1.,?.5

Tmtbed FEA

NRN

(,=.r,_)

573

705

748

783

342

613

7O8

743

NLWTIO

(I:./Uch)

512

656

713

784

NUdM

NFm

0.596

0.87O

0.946

0.949

0.894

0.930

0.953

1.001

Nmu'_ Fin_ Berna_ eucklno Lmd

NL_'-CLT Lagnmge _ Budding Load

NL_ LWTRDmnteS.ck_ Load

Ruu_ I_



Results for quasi-isotropic [ -45/45/90/0]s shells with external (eccentric) axial stiffeners

subjected to axial compression are shown in Tables 9 and 10 and in Figure 34. The re-

sults in Tables 9 and I0 are for composite shells having 4, 8, 16, and 24 axial stiffeners

with various stiffener heights (1.0", 2.0", 3.0"). The plot of Figure 34 is a comparison

of the buckling load for a shell having 24 axial stiffeners as a function of stiffener height

for the various theories used in this study. The results indicate that the discrete LWTR

yields more conservative (lower) buckling results than the smeared approaches. More-

over, as the stiffener height increases the difference between the discrete and the smeared

approaches increase. In addition, as the number of stiffeners increases the difference

between the discrete and smeared approaches increases. This could be due to some lo-

calized stiffener buckling which occurs in the discrete stiffener analyses, but cannot be

accounted for when using a smeared approach. At this time this localized buckling can-

not be predicted directly by the discrete method.

Results for quasi-isotropic [-45/45/90/0]s shells with internal (eccentric) ring stiffeners

subjected to external pressure are presented in Tables 11 and 12 and in Figure 35. The

results in Tables 6 and 7 are for composite shells having 5, 10, and 25 ring stiffeners

subjected to external pressure for various stiffener heights (0.5", !.0", 1.5"). The plot in

Figure 35 is for buckling pressure versus stiffener height for a cylindrical composite shell

having 25 ring stiffeners. As can be seen by the results in Tables 11 and 12 and in Figure

35 tile discrete LWTR yields more conservative buckling results than the smeared ap-

proach. The difference becomes more pronounced as the number of stiffeners increases

and as the stiffener height increases. As mentioned previously this is probably due in

part to some localized stiffener buckling that is accounted for only in the discrete anal-

ysis.
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TIblc 9. Analysis of [ -45/45/90/0]3 0.2" Thick Circular Cylindrical Shell with _cial Stiffeners Sub-
jected to Axial Compression (R" 8S", L-100")- Jones Sme_ed/LWTR Discrete.

No.efS_nem I _ LWTR

SUnaw _ Jmm ,_mmch _ Error
(_) (llx_nc_ (Im.Avm)

i iii

UnstlffmeM 1799 179_ -0.35t
M-15. N,,1 16,.15,N,.1

I

4 / (1.0") 2192 2181 -_50_
M-I. N,,IO 14,,1.N,.IO

• / (1.0") 2255 2221 -1.53t6
M.,1. N-IO 14,.i. N,.,IO

i

16 / (1.0") 2381 2334 "Z.01t
Mul, N,'10 Mml, NmlO

24 / (1.0 s) 2S04 2444 "2.45q_
M_I, N"IO 84"1,14,'10

4 / (2.0 I) 2423 2423 0.016
M"lq, N'IO Nbl, N_

|

8 1 (2.0') 271S 2545 -4.37_
M,,1. N,,IO M,,1, N,_IO

i

16 / (2.O') 3294 3010
14-1, 14,,,10 IIAel, I¢J10 -tl.50_

n i

24 / (2.0') 386? )411 -13.30116
M-I, N,,IO t4,,1, N,,11

iw I

4 t (3.0') 2940 27m -4.1816
M.,1. NelO 16,,I, 14,,11

8 / (3.0") 3745 3178 .17.78qM
kl,,1, N,,IO 14-1, 14,,11

16 / (3.0') 5528 4238 -25.721_
06-1, IblO t4-1, N,,11

mu i le ; :

24 / (3.17) 6882 5219 -31.8ER6
M_I. N,,10 M_I, N,,11

LWTRO

LWTItD

LWIllD

LWlltO

LW130

LW'I"RD

LWTlm

LWTlm

LWTRD

LWTI_

LW11_

LWTRD

LWTRD

M- numNr of mJl MIIhvwm
N ,, nunmr of aram_rmtlal hallVravm

_- L.Ww.'Jme_mMrJ Th_ oC_ec_ _du__ S_it_nm
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Table 10. An_ysis of' [-45/45t90/0]_ 0.2" Thick Circular CylindriceJ Shell with AxiaJ Stiffeners
Subje_ed to _iaJ Compression (R-85", L" 100")- Reddy Smeared/L_'rR Discrete.

_nww H_ Rib,_xoech i _cnnn Enw An_
(_) (Ix,Jhch) (Ix./Ind_

Umtlffmed 1793 17'93 0.0_
M.15. N-1 M..1S. N-1

4 / (1.0') Z177 2181 ÷0.11_
M-1.14,,10 M-1,14,,10

I / (1.0") 2247 GrZl -1.17_

M,,I, N-IO M,,1, N,,IO

14 / (1.0') ZI 2334 -_1_
_1, _10 _1, 14-10

Z4 / (1.0") 2528 2_ -3.24_
14-1. N-IO M..I. N-IO

4 / (2.0.) 2422 2423 +0.04_
14-1. IblO M-1. Nil

8 / (2.0") 2?34 ZS4| -7.51%
Id-1.141.10 Id-I. N-10

16 / (7..O') 3SS4 SOlO
M,,,I, 14-10 MIni, N-10 -11.43_

24 / (Z.Ow) _ )411 -16.21116
M-l, 14,-10 M,-1, 14-11

4 / (3.0') mlS(I 21'm -4.7S,l_
M-I. 14,.10 M..1, N-11

8 / (3.0") 3797 3178 -19.48_
Ird,,1,N-IO M.,1, N,-11

14 / (3.0") 5451; 42]8 -ZIL?4_
Me1. I_10 16.1, N-11

24 / (3.0") 7061 SZlS -3S._
M,,1. Ik, lO Ilk1, Ikll

Same

Reddy

LWT1RD

LWTRD

LWTRO

LWl_

LWT1RO

I.WTRO

LWTI_

LWTItD

LWTI_

LWTI_

Id- nunll_ of uial twlMavm
N - numbwo1'drc_mtwent_J ha_

LW'I'RD-I._r-_N I._rnina_ Thec_ ol Reddymm I_:ete ._ffmez
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Table ! i. Analysis o£ [ --45/45/90/0_s 0.2" Thick Circular Cylindrical Shell with Rin I Stiffeners Sub-
jected to l..ater,,I Pressure (R- 85", L- 100")- Jones Smeaxed/L'_'T'R Discrete.

UnsUffu_ed

S_O.S_

10/(0.5")

:'S/(0.5.)

S/(1.0")

0/( t ,o")

25/(t,o')

s_t.s.)

10/(1.5")

2s/(1..5")

1.63

lkl, N-11

5.57

M-l, N,,9

15.53

14-1, N-8

28.91

16.1, N-7

1.61

Id_l, N-11

21.42

M,.1, No6

36.29

M'I, 1_5

-1.196

-11.4%

-152.%

-22.5_

-Z9.4%

-35.0'_

-41.6%

-3&3_

-44.9%

-54.6%

LWI"RD

LWI"RD

LWTRD

LWTRD

LWTP.O

LW'r_

LWTRD

LWI"RD

LW'_D

LWTRD

M - number of axial halfwaves

N - number of ¢s:umflmmll Ivdfwwes

LWTRD - Lwer-wise La_imKe Theory of Reddy with Ciscme Stiffeners
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Tsbie 12. Anslysis or [ -4514519010]s 0.2" Thick Circuisr CylindricslShell with Ring StiffenersSub-
jectedto L,steradPressure(R- 85", L" 100") - Reddy Smeazed/LV_'i"R Discrete.

_01(O.S')

ii

2S/(0.S')

II

S/(1.0")

i

10/(1.0")

:'5/(1.0")

S/(_.S')

2S/(1.S')

18.10
t4,,1, N-?

II

16.85

;4-1, N-7
! I

32.0O
M..I. 1_7

66.35
M-l, N-6

i

113.,?.7
M-l, N,,6

M" ml'nl_ of Imhll hlllfWm_

N - numb4r of circumfenm_al halfivw_

21.42
kl_l. N,.6

i

36.29
14-1, N.,S

i

26.46
M-1. N,.7

-34.O4)6

-42.7')6

..41.$_

i

-49.4%

-S3.St6

-47.0%

-$4.9%

-61.8%

LWTRO- I.wer-wtse Lamlrme Theory o4'Reddywith OiscreCeSUffm

LWTRD

LWTItD

LWTRD

Lw'nm

LWTRO

LWTRD

i

LWTRD

LWTRD

LWTRD

Results 140



0 0 0 0 0
IdD 0 In 0 I_

(jsd) aJnssaJd 2UJl_i_n_[

0

0

cq 7

0

II

80

o

wJ

hn

(*4

e8

e_
e5

U

.rig

N
°_

Results 141



Analyses of quasi-isotropic [-45/45/90/0]s shells with eccentric, internal stiffeners was

conducted next to compare the discrete LWTR with a finite element solution. The finite

element program CSM Testbed [187,188] was used to analyze the geodesic cylindrical

shells. Nine-node assumed-natural-coordinate strain (ANS) CO (transverse-shear

deformable) shell elements were used to model both the shell and the stiffeners. In these

buckling analyses and in the finite element analyses to follow, geodesically stiffened

shells having lx12, lx16, 2x12, and 2x16 unit cells as described in Figure 36 are studied.

The finite element model will be made of a unit cell of one of the aforementioned

geodesic cylinders. A typical finite element model of a unit cell is shown in Figure 37.

The cylinders were subjected to axial compression and stiffener heights of 0.5", 1.0",

1.5.", and 2.0" were used for these analyses. The results of this study are presented in

Tables 13-16. The 2x12 geodesic shell model yields the closest agreement between the

two analytical methods and the results for this model are plotted in Figure 38. The

LWTR discrete results and the Testbed finite element results show good agreement. The

LWTR discrete method yields more conservative buckling loads than the finite element

method except for the 2x16 shell and the 0.5" and 2.0" stiffener heights in the lx12 shell.

The maximum difference in the buckling loads is for the lx16 shell where the LWTR

discrete results are 9.3% more conservative for the 1.0" and 1.5" stiffener heights than

the finite element method. The difference between the LWTR discrete method and the

finite element method can be attributed to the fact that the LWTR method neglects the

out-of-plane and the torsional stiffnesses of the stiffeners. Also, the shell is comprised

of a quasi-isotropic laminate and although small, the orthotropic stiffnesses,

C_6, C26, C36, C45, are present. The LWTR discrete approach assumes these values are

zero and this may result in a slight change in the buckling load. Nevertheless, a good

correlation of the discrete and finite element buckling results does exist.

Results 142



G1x12 G1x16

G2x 12
G2x 16

Fizure 36. Geodesically stiffened shell conli|urations.
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Table 13. Analysisof [ -45t451qOlO]s 0.2" Thick Circular CylindricalShell with GeodesicStiffeners
Subjectedto AxiadCompression(R-85", L- 100", Ix12 GeodesicShell Model).

StiffenerHeight

(inches)

Unstiffened

Testbed FEA

(Ibs./inch)

1759

LWTR
Discrete

(Ibs./inch)

1793

M,,15, N-1

Error

+I .9%

0.5

1.0

1.5

2.0

2105

2172

2232

2284

2119

2139

2211

2382

+0.7%

-1.5%

-0.9%

+4.3%

Lowest

Analysis

FEA

FEA

LWTRD

LWTRD

FEA

M - 1, N= 10 for all LWTRD Results

1xl 2 Geodesic Model

- 23.99 Degrees

M = number of axial halfwaves

N - number of circumferential halfwaves

LWTRD - Layer,vise Laminate Theory of Reddy with Discrete Stiffeners
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Table 14. Analysisof"[ -45/45/90/03s 0.2" Thick Circular CylindricalShell with GeodesicStiffeners
Subjectedto Axial Compression(R I 85", L" 100p, lxl 6 GeodesicShell ,_,|odel).

Stiffener Height
(inches)

Unstiffened

0.S

1.0

1.5

2.0

Testbed FEA
(Ibs./inch)

1759

2225

2368

2488

2595

LWTR
Discrete

(Ibs./inch)

1793

M-1S, N-1

2121

2148

2257

2494

Error

+1.9%

-4.3%

-9.3%

-9.3%

-3.9%

Lowest

Analysis

FEA

LWTRD

LWTRD

LWTRD

LWTRD

M - 1, N - 10 for all LWTRD Results

1xl 6 Geodesic Model

a = 18.46 Degrees

M i number of axial halfwaves

N I number of circumferential halfwaves

LWTRD - Layerwise Laminate Theory of Reddy with Discrete Stiffeners

Result= !46



Table 15. Analysis or [ -45/45/90/0]5 0.2" Thick Circular Cylindrical Shell with Geodesic StilTeners
Subjected to Axial Compression (R-85% L- 100% 2x12 Geodesic Shell Model).

Stiffener Height

(inches)

Unstiffened

0.5

1.0

1.5

2.0

Testbed FEA

(Ibs./inch)

1759

2156

2193

2250

2289

LW'TR
Discrete

(Ibs./inch)

1793

M=15, N=1

2129

2146

2189

2286

E_or

+1.9%

-1.2%

-1.8%

-2.7%

-0.1%

Lowest

i Analysis

FEA

Lvv'r'RD

LWTRD

LWTRD

LWTRD

M = 1, N - 10 for all LW'I'RD Results

2x 12 Geodesic Model

a= 41.67 Degrees

M - number of axial halfwaves

N = number of circumferential halfwaves

LWTRD - Layerwise Laminate Theory of Reddy with Discrete Stiffeners

Result= 14"/



Table 16. Analysisof [ -45/45/90/0]s 0.2" Thick Circular CylindricalShell with GeodesicStilTcners
Subjected to A.xiaJCompression(R-85", L- 100", 2x16 GeodesicShell Model).

Stiffener,
Height

(inches)

Unstiffened

0.5

1.O

1.5

2.0

Testbed FEA

(Ibs./inch)

1759

2049

2078

2122

2192

LW'FR
Discrete

(Ibs./inch)

1793

M-15, N=I

2130

2146

2189

2286

Error

+1.9%

+4.0%

+3.3%

+3.2%

i,

+4.3%

Lowest

Analysis

FEA

FEA

FEA

FEA

FEA

M - 1, N = 10 for all LWTRD Results

2xl 6 Geodesic Model

= 33.73 Degrees

M - number of axial halfwaves
N = number of circumferential haifwaves

LWTRD - Layerwise Laminate Theory of Reddy with Discrete Stiffeners

Results 148



(u!/'sql) peol 2U!lq:m8

o

II

O0

0 "_

e_

m

o "_

ad

,,g

f,m

Results 149



Analysis or cross-ply [0/90/90/0] circular cylindrical shells with eccentric axial, ring, and

geodesic stiffeners was also performed. The same material properties, shell thickness,

stiffener thickness, and geometries as those or the quasi-isotropic case were used.

Results for the cross-ply shells with external, eccentric axial stiffeners subjected to axial

compression are shown in Tables 17 and 18 and in Figure 39. Once again the discrete

approach yields more conservative buckling results than the smeared approach. As the

stiffener height increases the difference between the LWTR discrete and the smeared

approaches becomes larger as expected. The results plotted in Figure 40 are for 24 axial

stiffeners at various stiffener heights for the smeared and discrete approaches.

The results for internally ring stiffened cross-ply cylinders subjected to external pressure

are provided in Tables 19 and 20 and in Figure 40. The buckling pressure predicted by

the LWTR discrete approach is much lower than that predicted by the smeared ap-

proaches. The difference is more pronounced as the stiffener height increases. The plot

shown in Figure 40 is for a cylinder having 25 internal ring stiffeners.

Analyses of cross-ply shells with internal geodesic stiffeners was performed to compare

the LWTR discrete and the CSM Testbed finite element results. The same models and

geometries used in the quasi-isotropic analysis were also used for the geodesic cross-ply

analyses (see Figures 36 and 37). The results are For axial compression and are presented

in Tables 21-24. The lx12 geodesic shell model yields the closest agreement between the

two solutions and a plot ofthe buckling results for this shell is shown in Figure 41. The

maximum difference in the buckling loads is for the lx16 shell where the LWTR discrete

results are 13.4% more conservative ror the 1.5" stiffener height than the finite element

results. As seen from Tables 21 and 23 the results begin to diverge at the 2.0" stiffener

heights. The difference between the LWTR discrete method and the Finite element
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TAble]7. Analysis of' [0/90/90/0J 0.2" Thick Circular Cylindrie-i Shell with Axisl Stiffeners Subjected
to Axial Compression (R- 8$', L " 100"). Jones Smetred/LW']'R Discrete.

at so,taws / SmeuQcV Uwru Lc,_sc

_nmw _ JJmes,q_ned_ Uba_m _ ,*d_Vm
(InCh,) (Ix,,'ln_) (Im./b_

Un_ffened 1033 1030 -Q.316 L.WTRD
ld,,4, N-l? M,,,4,N-I?

41 (1.0") 1576 1381 ,O.416 J_es
Id-1, N,,IO M-lo 14-10

• / (1.0") 1424 1399 -1J_ LWTRD
14,,1,N.,IO M,-I, N,,10

16 / (1.O") 1513 147S -?..7_ LW'TRD
M,,1, N,,10 M,,,I, N-tO

24 / (1.O') 16QS 13.50 -3.Sq_ LWTRD
14-1. N-10 Id-I, N,.IO

ii. I .i

4/(2.0') 1S30 1311 -I.M_ LWTRD
Id,,1. N,,.IO Id,,1. N,,11

• / (2.0") 172• 1654 ..4.4ti LWT_
I_1. N-IO M,,,1.14,10

1• / (2.0") 21_ lS?Z
M-1. N-IO M,,1,14-10 _ LWTRD

Z4 / (2.0") Z481 ZZ•• q).5_ LWTRD
M,,1, N,,,10 M,,1, N,-11

4 / (3.0") 2046 1755 -1_ LWTRD
Id-I. N,-IO M-T. N,-IO

8 / (3.0") 2749 2187 *25.716 LW11_
M,,1, N,-10 M,,1, N-IO

1• / (3.0") 4120 2978 -31L31t LW'II_
M-1. N,-IO Mml. Nell

Z4 / (3.0") SSSO 372S -4¢2N LW11C
M-1. N-10 M,.1, N-11

M. mambf of axMIhslfwawls
N - nunlbsrof drcumf_rmtml haRmMB

LW111D- Lww-vme _ TM¢_ of Itede/_th Oba_te Stlffmem
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Table 18. Analysis of"[0/90/90/0] 0.2" "['hick Circulsr Cylindricsl Shell with A.xi_ Stiffeners Subjected
to A.xi_ Compression (R- 85", L- 100") - Reddy SmeLred/LWTR Discrete.

SUffener_ _ _ tXsam En_r
0nmw) _ (Ix.A_

I

Unmlffened 10.10 1030 0.016 LW11_
14-4. N-l? M-4.N-I?

4 / (1.Or) 1574 1HI _
Idll, 14"10 14"1, N,,IO

I / (1.0") 1427 -?..ON LWT11D
M,,1, 14-10 M-l, N,,IO

16 1 (1.O') 1530 1475 -LTtt LWlllD
M_I, N,,10 MiI. N,,10

24 1 (1.0") IlNII 1550 -5.21t LWTlID
M-l, I_10 Idll, N,,,10

4 1 (2.0') 1585 1511 "4._ LWlllD
M'I, N,,10 M',l, 14"11

8 / (2.0") 1846 lS54 -11.1Rl LW71_
M-1. N-IO 14-1.11-10

16 / (2.0") Z555 1972
M,,I, N_IO I_1. N-10 -19.5_ I.W'1110

24 / (20") 21L55 221r4 -Z5.S_ LWTIU)
14.,1,14-10 I_1, N,,,11

4 / (3.0") 20?1 1755 -1L711 LWTIID
14-1. N-IO Id-1. N-IO

8 1 (3.0") 280? 218? *ZIL315 LWTRD
M"I. N*IO t_1,14"10

16 / (5.OI) 4240 2978 "42.416 LWTRD
M-1. N-IO M,,1. N..11

24 / (5.0") 51;27 3729 -SOJ_ L.W1110
14-1. N.,IO M_I, N,-I1

M- nurnlNr or _ haleVmv_
N - _ or _'oJmtlrmtdM hll_av_

I.WIlqD- I.Jyw-,,me I.mnkm_ 'rhemy ot Reddywire DIKrmmSUehmers
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Table 19. Analysisof [0190/90/0] 0.2" Thick Circular CylindricaJShell with RingStiffenersSubjected
to L_teraJ Pressure (R" 85", L- 100")- Jones Smeared/L_A'T'RDiscrete.

I_ of SUtlVnen / Smeared/ (LWI"R) Low_
Stfff_mrHiol_ Jene8_ Oicnte

_ffened

10/(O.S')

|l

2S/(O.S')

li

s/(_.o')

i

lO/(1.o')
i

2S/(1.0")

sl( 1.s')

101(1.5")

I

2S/(1.3'_

0.89

M-1.1_12
i

4.67
M.,1, 1_9

tl

7.21

14.,1, N_O
|

12,87
14,.1. N,,7

49.92

M-l, N"S

J

9O.72
M,,1, N-4

29.69
M-I, N-6

t t |

23.414
M,,t, N-E
I i

36.19

-0.996

-14.4%

-16.016

-21.OK,

-30.9_

-30.6_

-43.1_

-39.8_

-37.9_

-62.7_

LWTRD

i

LWTRD

t

LWTRD

LWrRD

L.WTRO

LWTRD

LWTRD

i

LWTRD

LWTRD

LWTRD

M - numl_erof ulal halfwaves
N. numb_ of circumferm_lal hJhvavf

LWl"RD- Layer-wise laminate Theay of Recldyw_h Oisc_e Stlffenem

Resu_ I_



"Fable 20. Analysis or [0/90/90/0] 0.2" Thick Circullr C.vlindricsl Shell with Ring Stiffeners Subjected
to l._teraJ Pressure (R = $5", L" 100") - Reddy Sme_ed/LX_/'T'R Discrete.

o_S_tr_nms j Smmmd/ (LW'rR) Low_
Reck_ A,opro_m Discm,

Ur_Jtl_nKI

S/(O.S')

lO/(O.S')

2S/(O.S')

s/(9.o')

10/(1.0")

ZS/(_.O")

i

S/(_.S')

I0/(1.5")

zs/{t.s'}

0.88

P4-1, N,,12

5.52
M.,l, N-8

llal

6.S7
Id,,1, N-8

15.15
Id-l, 1_7

4.O8
kk-1,/4"9

ii i

36.19
I_1. N'6

0.0_ LWTRD

-3 S. 1_ LWTRO

-38.0')6 LWTRD

m

LWT_
-47..5S

-45.196 LWTRD

-47..5_ LWTRO

-sz. Lw o

-50.2% LWTRD

-45.995 LWTRD

-68.2% LWTRD

M " numberof mdalhldfWllVeS
N., nlagbe" of circumfmlmtid hal_
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method can be attributed to the fact that the LWTR method neglects the out-of-plane

and the torsional stiffnesses of the stiffeners. The difference starts to become more

pronounced as the stiffener heights increase. This is due to the fact that as the stiffener

height increases the effects of the out-of-plane and the torsional stiffnesses on the global

buckling results increase. Except for the Ixl6 geodesic shell model there appears to be

a good correlation of the buckling results, especially for the 1.0" and 1.5" stiffener

heights.

Finally, a study of the buckling of geodesically stiffened cylinders subjected to external

pressure was conducted. A lx12 geodesic shell model was selected which has the same

geometry and dimensions as used for the axial compression analyses. A comparison

between the LWTR discrete method and the finite element method (CSM Testbed) was

made for both the cross-ply case, [0/90/90/0], and the quasi-isotropic case,

[-45/45/9010]s. The results for the cross-ply [0190/90/0] shell is found in Table 25.

The LWTR results correlate fairly well with the finite element solutions especially for the

unstiffened case and for lower stiffener heights. The quasi-isotropic results are presented

in Table 26. The results indicate that at lower stiffener heights the buckling pressures

for both analytical methods are reasonably close, but as the stiffener height increases the

buckling pressures tend to diverge. Neglecting the orthotropic stiffnesses,

Ci6, C2_, C_, C(s, definitely must have a major impact on the stiffness of the layerwise

quasi-isotropic laminates when the shells are sbjected to external pressures. Another

difference between the LWTR discrete method and the l'mite element method can be

attributed to the fact that the LWTR method neglects the out-of-plane and the torsional

stiffnesses of the stiffeners. The difference becomes larger as the stiffener height in-

creases because as the stiffener height increases the effects of the out-of-plane and the

torsional stiffnesses on the global buckling results become more prominent.
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The typical CPu time for the Testbed finite element buckling analyses is 620 seconds.

The CPU time for the layerwise discrete method for one buckling mode (m, n) is 410

seconds. Consequently, the CPU times for the layerwise discrete method can become

large, perhaps 8-10 hours or more, if a sweep of a large number of buckling modes (m,

n) is made in order to determine the minimum eigenvalue.

5.2 LWTR/Testbed Finite Element Stress Analysis Comparison

A stress analysis comparison of the LWTR. and CSM Testbed finite element codes was

made for geodesically stiffened shells. A Ix12 geodesically stiffened shell as shown in

Figure 36 with i.0" high by 0.2" thick internal stiffeners was selected as the comparison

model. The shell geometry consists of a radius of 85" and length of 100". In lieu of

modeling the entire cylinder, symmetry conditions were employed and an analysis of a

unit cell was made, see Figures 42 and 43. The loadings were employed via the appli-

cation of uniformly applied end displacements. Three laminate layups were studied in

this analysis: E0/90/0]; [45/- 45/45/- 45]; and [601- 60/0/- 60/60]. The material

properties used are given in Table 7. The ply thickness used in these analyses is 0.100".

Analyses were performed with 0 ° orthotropic stiffeners. Applied end displacements of

0.01" were used to generate the compressive loads.

The CSM Testbed elements described in section 5.1 were used for this analysis. The fi-

nite element model shown in Figure 42 describes the finite element mesh and the

boundary conditions used for this analysis. The Testbed finite element model uses 256

nine.node assumed-natural.coordinate strain (ANS) shear deformable shell elements to

model the the shell and 32 nine-node plate elements to model the stiffeners.
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T=ble 21. Anilysis of"[0/90/90/0_ 0.2" Thick Circulir Cylindricll Shell with Geodesic StitTeners Sub-
jected to Axial Compression (R-85", L" 100", ix12 Geodesic Shell _lodel).

Stiffener Height

(inches)

Unstiffened

0.5

1.0

1.5

2.0

Testbed FEA

(Ibs./inch)

1053

1347

1570

1664

LWTR
Discrete

(Ibs./inch)

1030

M-15, N-1

1326

1549

1702

Error

-2.2%

-1.6%

-1.3%

+2.2%

1743 1953 +10.8%

Lowest

Analysis

LWTRD

LW'I'RD

Lw'r'RD

FEA

FEA

M = 1, N= 10 for all LW'rRD Results

lxl 2 Geodesic Model

a = 23.99 Degrees

M - number of axial halfwaves

N = number of circumferential halfwaves

LWTRD - LayenNise Laminate Theory of Redcly with Discrete Stiffeners
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Table 22. Analysisof [0/90/90/0] 0.2" Thick Circular Cylindrical Shell with GeodesicStiffeners Sub-
jected to Axial Compression (R" 8$', L- 100", Ixi6 Geodesic Shell Model).

Stiffener Height
(inches)

Unstiffened

0.5

1.0

1.5

2.0

Testbed FEA

(Ibs./inch)

1053

1357

1768

1980

2150

LWTR
Discrete

(Ibs./inch)

1030

M-15, N,1

1327

1537

1715

2016

Error

-2.2%

-2.2%

-13.1%

-13.4%

-6.2%

Lowest

Analysis

LW'I'RD

LWTRD

LWTRD

LWTRD

LWTRD

M - 1, N- 10 for all LWTRD Results

1xl 6 Geodesic Model

Q - 18.46 Degrees

M - number of axial halfwaves

N - number of circumferentiaJ halfwaves

LWTRD - Layerwise Laminate Theory of Reddy with Discrete Stiffeners
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Table 23. Analysisor [0/90/90/03 0.2" Thick Circular CylindricalShell with GeodesicStiffenersSub-
jectedto Axial Compression(R-85", L" 100", 2x12 GeodesicShell _|odel).

Stiffener Height
(inches)

Unstiffened

Testbed FEA

(Ibs./inch)

1053

LWTR
Discrete

(Ibs./inch)

1030

M-15, N-1

Error

-2.2%

Lowest

Analysis

LW'I'RD

0.5

1.0

1.5

2.0

1505

1724

1802

1838

1588

1764

1908

2052

+5.2%

+2.3%

+5.6%

+I 0.4%

FEA

FEA

FEA

FEA

M = 1, N- 10 for all LWTRD Results

2xl 2 Geodesic Model

a = 41.67 Degrees

M - number of axial halfwaves

N = number of circumferential halfwaves

LWTRD - Layerwise Laminate Theory of Reddy with Discrete Stiffeners
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Table 24. Analysis of"[0/q019010] 0.2" Thick Circular Cylindrical Shell with Geodesic Stiffeners Sub-
jected to Axial Compression (R" 85", L- 10W',2xl 6 Geodesic Shell Model).

Stiffener Height
(inches)

Unstiffened

Testbed FEA

(Ibs./inch)

1053

LWTR
Discrete

(Ibs./inch)

1030

M.15, N,,1

Error

-2.2%

0,5

1.0

1.5

2.0

1658

1937

2052

2180

1574

1763

1957

2206

-5.2%

-9.0%

-4.6%

+1.2%

Lowest

Analysis

LWTRD

LWTRD

LWTRD

LW'FRD

FEA

M - 1, N- 10 for all LWTRD Results

2x 16 Geodesic Model

a - 33.73 Degrees

M = number of axial halfwaves

N., number of circumferential halfwaves

Lvv'rRD- Layerwise Laminate Theory of Reddy with Discrete Stiffeners
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Table 25. Analysisof [0/90/90/0] 0.2" Thick Circular CylindricalShell with GeodesicStiffenersSub-
jected to Lateral Pressure (R=85 ", L= I0_', Ix12 Geodesic Shell Model).

Stiffener
Height

(inches)

Unstiffened

0.5

1.0

1.5

2.0

Testbed FEA

(psi)

0.89

1.22

1.88

2.40

2.65

LWTR
Discrete

(psi)

0.88

M=I, N=I 1

1.17

1.67

2.17

2.33

Error

-I .1%

-4.0%

-11.2%

-9.6%

-12.1%

Lowest

Analysis

LWTRD

LWTRD

LWTRD

LWTRD

LWTRD

M = 1, N = 11 for all LWTRD Results

lxl 2 Geodesic Model

a = 23.99 Degrees

M = number of axial halfwaves
N = number of circumferential halfwaves

LWTRD - Layerwise Laminate Theory of Reddy with Discrete Stiffeners
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Table 26. Analysis of [ -4S/45/90/0]s 0.2" Thick Circular Cylindrical Shell with Geodesic Stiffeners
Subjected to Lateral Pressure (R-85", L- 100", lxi2 Geodesic Shell Model).

Stiffener, '

Height

(inches)

Unstiffened

Testbed FEA

(psi)

1.63

LWTR
Discrete

(psi)

1.61

M-l, N-11

Error

-1.2%

Lowest

Analysis

LWTRD

0.5

1.0

1.5

2.09

2.79

3.80

1.90

2.09

2.20

-9.1%

-25.1%

-42.1%

LWTRD

LWTRD

LWTRD

M = 1, N - 11 for all LWTRD Results

1 xl 2 Geodesic Model

= 23.99 Degrees

M = number of axial halfwaves
N - number of circumferential halfwaves

LWTRD - Layerwise Laminate Theory of Reddy with Discrete Stiffeners
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The LWTR finite element model described in Figure 43 shows the finite element mesh

and the boundary conditions used for this analysis. A more refined mesh is used in

critical regions such as the stiffener intersection. The model employs 256 four-node

LWTR shell elements to model the shell and 32 two-node LWTR beam elements to

model the stiffeners.

The first analysis considered here is for a [0/90/0] shell with orthotropic (0 °) stiffeners.

The plot in Figure 44 shows the axial stress, o_, for all layers at x -- L plotted along
2

the nondimensional circumference of the unit cell, --_-. The stresses calculated from the

two analyses are in good agreement away from the point of the stiffener intersection.

Y I the LWTR. stresses are less compressive
Near the stiffener intersection i.e. L-"_ = "_" '

than the stresses calculated by the Testbed analysis. For the bottom 0° layer the axial

compressive stress is 3.2% (120 psi) less compressive than the Testbed axial stress. This

small difference is within reason and some of the difference can be attributed to the fact

that a different type of element is used for the stiffeners in each ofthe models and a small

difference in the behavior of the stiffener intersection intersection is being observed. The

axial stresses in the 900 layer as shown in Figure 44 are in good agreement except at the

location of the stiffener intersection where the LWTR stress, axe,, is 10.6% (30 psi) less

compressive than the Testbed axial stress at that location. The LWTR axial stress at the

stiffener intersection in the top 0 ° layer is 3.0% (104 psi) less compressive than the

Testbed axial stress. It is apparent from this analysis that the stiffener intersection is

slightly more compliant (less stiff) for the LWTR method when compared with the re.

suits generated from the Testbed analysis.

The second analysis considered here is that of an angle ply laminate,

E45/- 45/45/- 45], with orthotropic stiffeners. The axial stresses for the individual
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layers are presented in Figures 45 and 46. The axial compressive stresses in the individual

layers are in fairly close agreement. The largest difference in stresses occurs at the

stiffener intersection location for the top -45 o layer shown in Figure 46 where the

LWTR are 10.5°/o . (40 psi) less compressive than those calculated from the Testbed

method. This difference in stresses at the stiffener intersection can be attributed to the

difference in the stiffener intersection stiffness of the two analytical methods.

The final analysis is that of a symmetric 5 layer quasi-isotropic shell laminate,

[60/- 60/0/- 60/60], with orthotropic stiffeners. The results of this analysis are pre-

sented in Figures 47-49. There is good agreement of the axial stresses for all layers. The

axial stresses in the 600 and -60 o layers are 5-6% (20-25 psi) smaller in the LWTR along

the circumference of the shell. The largest percentage difference in compressive stress

occurs at the location of the stiffener intersection in the top 60 o layer where the LWTR

axial stress is 10.4% (35 psi) smaller than the Testbed stress, see Figure 49. In the 0°

layer the Testbed results are an average of 2.5*/, (80-100 psi) smaller than the LWTR

results. Thus, for the LWTR analysis the 0 ° layer is carrying slightly more compressive

load and the 60 o and -60 o layers do not carry quite as much compressive load when

compared with the Testbed results. Overall there is good agreement of the axial stresses

for all layers.

The stress analysis comparison here was conducted to help verify the stress analysis ca-

pabilities of the LWTR t'mite element program. Several lamination schemes were con-

sidered to accomplish this task. A good correlation exists between the LWTR analyses

and the Testbed analyses. Small differences in stresses do occur at the siffener inter-

section. These differences are not major and arc due to the difference in stiffener inter-

section response measured by the two analysis methods.
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The CPU time for the Testbed finite element stress analysis is 125 seconds. Run times

for the layerwise theory vary depending upon the number of shell laminate layers, num-

ber of nodes in the mesh, and the type of elements used (4 or 9 nodes). A three layered

shell, [0/90/0], medel (289 nodes) with one layered beams has 3567 active degrees of

freedom. A mesh of 256 four node layerwise shell elements and 32 two node [ayerwise

beam elements will have a half-bandwidth of 285. The CPU times for this model are 139

seconds for a linear analysis and 730 seconds for a geometrically nonlinear analysis (4

iterations to converge). If the mesh is changed to 64 nine node layerwise shell elements

and 16 three node Iayerwise beam elements with a half-bandwidth of 555, the CPU times

increase to 736 seconds for a linear analysis and 4251 seconds for a nonlinear analysis

(5 iterations to converge). A six layered shell, E45/90/O]s, with 289 nodes using one

layered beams has 6168 active degrees of freedom. A mesh of 256 four node layerwise

shell elements and 32 two node layerwise beam elements will have a half-bandwidth of

456. The CPU times for this model are 752 seconds for a linear analysis and 3261 sec-

onds for a geometrically nonlinear analysis (4 iterations to converge). Increasing the

bandwidth has a large influence on the CPU time necessary to run the layerwise finite

element analyses. Furthermore, layerwise elements are not practical elements to use if

a postbuckling analysis must be conducted due to the large run times.

5.3 Displacements and Interlaminar Stresses in Geodesically Stiffened Shells

In thisstudy itwas desiredto conduct analyses of geodesicallystiffenedshellsusing the

LWTR in order to determine the trends that have major effectson the transversedis-

placements and the interlaminar stresses.Variables such as the laminate layup and

thickness,stiffenerheight,stiffenerorientation,stiffenerangle,cellgeometry, celllength,

Results 168
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were varied when performing this study. Concentration here is placed upon the action

of the shells under pure compressive loads and combined loads generated with the addi-

tion of internal pressure. In addition, a geometrically nonlinear analysis was performed

to determine the effects on the displacement and stress fields. A base line design using

a lx12 geodesically stiffened shell with a nominal radius of 85", shell length of 100", 1.0"

high by 0.2" thick orthotropic internal stiffeners, and a [0/90/0] shell laminate was used

for a large number of the analyses. A simple shell laminate, [0/90/0], was used to per-

form many of the comparison studies in order to keep the number of degrees of freedom

manageable and in particular to keep the bandwidth of the global stiffness matrix from

becoming excessively large. The bandwidth can become extremely large when analyzing

a large number of nodes and laminate layers using the layerwise theory. The LWTR fi-

nite element model used in these analyses was described previously in Figure 36. The

model consists of 289 nodes, 256 four-node layerwise shell elements, and 32 two-node

beam elements.

5.4 Displacement Field in Geodesically Stiffened Shells

A study of the transverse displacement field along the circumference of the unit cell at

L
x -- T was performed for various shell parameters. The transverse displacements are

the largest and most interesting displacements for the structures being analyzed in this

research. The shells are subjected to compressive loading via the application of applied

end displacements of O.Ol" and to a combined loading consisting of applied end dis-

placements of 0.01" and an internal pressure of lO psi. The transverse displacements

presented in this study are nondimensionalized using the following expression:
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A'xRL
x lOO (5.4)

Here • is the nondimensional transverse displacement, w is the transverse displacement,

h is the total laminate thickness, E_ is the modulus in the 1 direction,/_ is the applied

load, R is the shell radius, and L is the shell length. The first study considered here is

the effect of changing the laminate layup when the shell is subjected to compressive

loading. The nondimensional displacement results presented in Figure 50 are for six

different laminate layups: E0/90/0], [45/- 45/45/- 45], [60I - 60/0/- 60/60],

E45/90/O]s, [-45145190/0]s, and C30/- 30101- 30130]. The 1"0/90/0], [-45/45/90/0]s,

and E30/-30/0/- 30/30] laminates show the largest variations in nondimensional

transverse displacement 234%, 155%, and 113% respectively from the edge of the unit

Y

cell to the stiffener intersection at L"'_" = 0.5. The [451-45145/-45],

[60/- 60/0/- 60/60], [4519010]s yield respective changes in nondimensional transverse

displacement along the circumference of the shell of 45%, 52%, 100%. The

[45/- 45/45/- 45] and [30/- 30/0/- 30130] laminates yield the maximum nondimen-

sional transverse displacement along the circumference of 1.484 and 1.305 respectively

for the given geometry and loading conditions. Thus, in order to avoid the largest

transverse displacements and variations in transverse displacements in geodesically stiff-

ened composite shells it is best to avoid designs containing cross-ply laminates, angle

ply laminates, and laminates containing +300 or -300 plys.

The next study concentrates on the effects of changing the geodesically stiffened shell

geometry and the stiffener orientation angle on the transverse displacement field. A

[0/90/0] lx12 geodesically stiffened shell is used in this analysis. The shells are subjected

to uniform compressive loading via applied end displacements of 0.01", The stiffener
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orientation angle, _, relative to the shell is shown in Figure 1 and Figure 14. Figure 51

shows the nondimensional transverse displacement as a function of the geodesic shell

geometry and the subsequent stiffener orientation angle. The variation in the stiffener

orientation angles were obtained by changing the cell geometry from Glxl2 to Glxl6

in Figure 51a and by changing the shell length from 50" to 200" in Figure 5lb. The

nondimensional transverse displacement field presented in Figure Sla shows that as the

cell geometry is changed from Glxl2 (_ -- 24 °) to Glxl6 (_ -- 18.5 °) the maximum non-

dimensional transverse displacement decreases by 72%. The maximum transverse dis-

placement shows the largest decrease, 41%, when the cell geometry is changed from

Glxl2 (0c = 24 °) to Glxl3 (_ = 22.30). When the cell geometry is changed from Glxl5

(_-- 19.6 °) to Glxl6 (_-- 18.5 °) the change in maximum transverse displacement be-

comes less significant (2.5%). The results presented in Figure $1b show the transverse

displacement as a function of the stiffener angle by changing the shell length. The trends

predicted here indicate that as the shell length is decreased from 200" to 50" the maxi-

mum transverse displacement decreases by 52% even though the stiffener orientation

angle is increased from 12.5 ° to 41.7 °. Thus, decreasing the shell length has a much

greater effect on the shell stiffness than does increasing the stiffener orientation angle.

The results presented in Figure .51 indicate that the response of geodesic shells is a

stronger function of the shell geometry i,e. the number ofcells around the circumference

and the cell length and a weaker function of the stiffener orientation angle.

The eiTcctof increasingthe stiffenerheight on the nondimensional transversedisplace-

ment for both compressive loading and combined loading is shown in Figure 52. A

[0/90/0] Ixl2 geodesicallystilTenedshellisused in thisanalysis. Shown in Figure S2a

isa plot of the nondimensional transversedisplacement along the nondimensional shell

circumference. As expected the nondimensional transversedisplacements decrease as a
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function of the stiffener height. As the stiffener height is increased the area of the

stiffeners is increased and consequently the applied load N_ increases because the load

is a function of the applied displacements. In this study the applied displacement are

constant and thus-increasing the area increases the applied load. The transverse dis-

placements are also a strong function of the stiffener bending stiffness and to some ex-

tent the axial stiffness of the stiffener. Thus, the transverse displacements are a function

of the applied load, which increases as the stiffener height is increased, and the stiffness

of the stiffeners. Shown in Figure 52b is the effect of the stiffener height on the nondi-

mensional transverse displacements along the shell circumference when the shell is sub-

jected to combined loads. The decrease in the nondimensional transverse displacement

appears to be fairly uniform. In this case the applied load N_,is a function of the applied

displacements, load area, and the internal pressure. The load area is a function of the

increasing stiffener height. Therefore, the normalized transverse displacements will be a

complex function of the stiffener height, stiffener stiffness, and the internal pressure.

The nondimensional transverse displacements as a function of the shell laminate thick-

ness for a [0190/0] lx12 geodesically stiffened shell are shown in Figure .53. The laminate

thicknesses studied here are 0.15", 0.30", 0.45", and 0.60". The results for compressive

loading, shown in Figure 53b, reveals that the nondimensional transverse displacements

decrease by 40.6% when increasing the shell thickness from 0.1.5" to 0.60". The maxi-

mum normalized transverse displacements for the 0.15" and 0.30" thicknesses are close

together. This probably occurs because the nondimensional transverse displacement

used in this study is a function of the shell thickness squared. The actual transverse

displacements differ by 88%. The maximum difference in the actual transverse dis-

placements is between the 0.15" and 0.60" shell thicknesses and is .558%. The results for

the combined loading condition as a function of shell laminate thickness is shown in
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Figure 53b. As in the case for compressive loading, increasing the shell laminate thick-

ness causes the nondimensional transverse displacement to decrease. The maximum

difference in the nondimensional transverse displacement is 40.3% when increasing the

shell thickness from 0.18" to 0.60". The actual transverse displacement difference be-

tween the 0.15" and 0.60" thicknesses is 386%. The transverse displacements are defi-

nitely a function of" the shell laminate thickness.

Shown in Figure 54 are the nondimensional transverse displacement comparisons of"

linear and geometrically nonlinear analyses for [0/90/0] l x12 geodesically stiffened

shells. The results for the compressive loading load is found in Figure 54b. The nondi-

mensional transverse displacement results indicate that using a geometrically nonlinear

analysis does yield a stiffer structure and consequently slightly smaller transverse dis-

placements than the linear analysis. The maximum difference in the nondimensional

transverse displacements between the linear and nonlinear analysis is 8.9%. The results

for a combined loading are shown in Figure 54b. The addition ofinternal pressure yields

larger differences and variations in the nondimensional transverse displacements between

the linear and nonlinear analyses than does the case of compressive loading only. As

can be seen from Figure 54b the distribution and magnitude of the nonlinear results are

much different than the linear results. The maximum difference in the displacements is

28.7% for the combined loading condition. Therefore, it can be concluded that the ge-

ometric nonlinearities become more significant with the addition of internal pressure.

The effect of increasing the shell radius is shown in Figure 55. The nondimensional

transverse displacements for shell radii of 85", 170", and 255" subjected to an applied end

compression developed through applied displacements for a [0/90/0] laminate are de-

scribed in Figure 55a. As can be seen, as the shellradius isincreased the maximum
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nondimensional transverse displacement is reduced by 52.8% when the shell radius is

increased from 85" to 170". When the shell radius is increased from 85" to 255" the

maximum nondimensional transverse displacements are reduced 73%. Figure 55b shows

the nondimensional transverse displacements when an internal pressure of 10 psi is

added to the applied end compression loading for varying shell radii. When the radius

is increased from 85" to 170" the maximum transverse increases 47%. Increasing the

shell radius from 85" to 255" increases the transverse displacement by 55.5%. The ad-

dition of internal pressure yields large differences and variations in the nondimensional

transverse displacements as a function of the shell radius. As can be seen from Figure

55b, the distribution of the nondimensional transverse displacements yields a maximum

displacement at the stiffener intersection for the 85" shell, almost a uniform variation

of the displacements for the 170" shell, and a minimum displacement at the stiffener

intersection for the 255" shell. A possible explanation for this phenomena is that for a

constant shell thickness, as the shell radius is increased the ratio of the stiffener stiffness

to the shell stiffness to resist pressure induced deflections increases. Moreover, as the

shell radius is increased the load on the shell due to internal pressure increases and the

stiffeners exert a larger influence on the structural response. This becomes evident with

the addition of pressure loading. In this case the 85" shell has the smallest stiffness ratio

and thus with the addition of pressure the stiffeners tend to deflect more. The 170" shell

has an almost equal ratio and therefore a uniform displacement field is observed. The

255" shell has the largest stiffness ratio and thus with the addition of pressure the shell

deflects more away from the stiffener intersection.

Shown in Figure 56 is a comparison of a [0/90/0] lx12 geodesically stiffened shell, a

[0/90/0] lx12 axial/ring stiffened shell, and a [0/90/0] unstiffened shell. The axial/ring

stiffened shell internal axial and ring stiffeners consisting of 1.0" orthotropic stiffeners.
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The axial/ring stiffened finite element model with appropriate boundary conditions is

shown in Figure 57. The results for compressive end loads are shown in Figure 56a. The

geodesically stiffened shells show the largest transverse displacements of the shells

studied here. The r, ondimensional transverse displacements for the geodesically stiffened

shells are 91°,Io greater than the displacements for axial/ring stiffened shells and are 90%

greater than the displacements of unstiffened shells. The results for combined loading

is shown in Figure 56b. The geodesically stiffened shells exhibit the largest nondimen-

sional transverse displacements. The geodesically stiffened shells yield nondimensional

transverse displacements 46.3% larger than the axial/ring stiffened shells and are 37.1%

larger than the unstiffened shells. The axial/ring stiffened shells show that the shell

stiffness at the stiffener intersection is much greater than that of the geodesically stiff-

ened shell when internal pressure is applied. In this case the displacements away from

the stiffener intersection are larger than those at the intersection in much the same way

as the displacement field generated via the 255" shell shown in Figure 55b.

The last displacement field analysis involves studying the effects of combined loading

on geodesically stiffened shells. Figure 58 shows the results of these loadings on 0.075",

0.15", and 0.30" [0/90/0] laminates with various stiffener heights. The results show that

the maximum nondimensional transverse displacement occurs at the stiffener inter-

section until the stiffeners reach a critical height at which point the stiffeners are sum-

ciently stiff in bending to prevent large transverse displacements at the stiffener

intersection. At this point the shell displacements away from the stiffener intersection

becomes larger than the displacements at the stiffener intersection. The stiffener height

at which this occurs is also a function of the laminate thickness. For example, the

transverse displacement away from the stiffener intersection exceeds the transverse dis-

placement at the stiffener intersection for a stiffener height of 2.0" for a 0.075" laminate,
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4.0" for a 0.15" laminate, and 6.0" for a 0.30" laminate. Therefore, under the action of

compressive load and internal pressure the stiffeners act to decrease the transverse dis-

placements at the stiITener intersection, but only when the stiffeners are sufI'iciently deep

compared to the laminate thickness do the shell transverse displacements away from the

stiiTcner intersection exceed those at the stiffener intersection,

This study of the transverse displacement Held trends has yielded some interesting re-

sults. The shell laminate layup will have a major factor on the transverse displacement

Held. Changing the stiffener height, shell geometry, shell radius, and shell laminate

thickness all have a major impact on the structural response of the stiffened shells. A

geometric nonlinear analysis does not yield major changes in the displacement Held for

compressive loading, but nonlinearity is significant when pressure is added to the load=

ing. The geometry of the geodesically stiffened shell has a significant impact on the

displacement Held. When subjected to combined compression and internal pressure the

transverse displacements of the shell away from the stiffener intersection do not exceed

those at the stiffener intersection until deep stiffeners, a large radius, or an axial/ring

stiffened structure are used. One of the nice features in using the LWTR. finite element

code to conduct this design analysis is that it is fairly simple and quick to generate new

models by changing the cell geometry or the stiffener parameters, This is not true for the

Testbed finite element code where a more time consuming effort is needed to generate

models that change shell geometries and/or stiffener heights.
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5.5 Detailed Stress Study

The results presented in this section will focus on interlaminar stresses, but a few exam-

pies of the in-plane stresses a_= and a_y over the region of the entire shell will also be

presented. Interlaminar stresses in the geodesic shells have never been studied in detail

before. The interlaminar stresses over the entire shell structure for a few specific cases

will be presented. This will help to determine the regions of peak interlaminar stresses

and the nature of the stress distribution over the entire region. The interlaminar stresses

at the critical regions, probably near the stiffener intersection, will be studied. The

interlaminar stress distribution through the thickness at the critical regions will be

studied. The effects of the shell laminate layups, laminate thickness, pressure loading,

stiffener height, shell radii, cell geometry, and geometric nonlinearity on the interlaminar

stresses will presented. The base line design used in this study is a C0/90/0] lx12

geodesically stiffened shell with a shell radius of 85" and 1.0" internal orthotropic

stiffeners. The base line laminate thickness used here is 0.30". The loadings considered

in these analyses are applied compressive end loads generated through applied end dis-

placements of 0.01" on each edge (x-0, Lx) and combined compressive loads and

internal pressure (10 psi). Some of the more interesting intcrlaminar stress results are

presented in this work. The stresses are nondimensionalized in this study using the fol-

lowing expression:

ahL
= --=----- (5.5)

NxR

Here _ is the nondimensional stress, a is the generated stress, h is the total laminate

thickness, Nx is the applied load, R is the shell radius, and L is the shell length.
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5.5.1 In-Plane Stress Study

The nondimensional in-plane stresses, _ and _,y, will be discussed in this section. The

in-plane stress, _,_, of the inner layer for a [0/90/0] lx12 geodesically stiffened shell with

1.0" internal stiffeners subjected to an applied end load of 0.01" is shown in Figure 59.

The peak in-plane stresses, _, occur at the boundaries x = 0, L_ and also at the

L_ Ly
stiffener intersection x =--_-, y -- -_-. The in-plane stresses, a-_,, are the largest of the

six stresses and thus are likely to be the primary contributing stresses to cause failure.

By viewing Figure 59 it can be said that failure would most likely occur at the boundaries

(x = 0, Lx) or at the stiffener intersection. Figure 60 is a plot of V,, over the stiffened

shell structure for the outer layer of a [0/90/0"1 lx12 geodesicaUy stiffened shell with 1.0"

internal onhotropic stiffeners subjected to a compressive end load. The stress distrib-

ution, _,.,, over the surface of the shell in the top layer as shown in Figure 60 yields a

different stress field shape than that generated in the inner layer shown in Figure 61.

The stresses in the outer layer peak at the boundary corners and at the stiffener inter-

section. As can be seen from Figures 59 and 60, the in-plane stresses, _, for the inner

layer are more uniformly distributed, particularly at the boundaries than the in-plane

stresses for the outer layer. One possible explanation for this phenomena is that the

stiffeners are attached to the inner layer and this reduces the bending of the inner layer

and in addition some of the load is carried by the stiffeners. This results in more uniform

stresses in the inner layer. The influence of the stiffeners on the outer layers are evi-

denced by the fact that the in.plane stresses are lower at the corners of the boundaries

and at the stiffener intersection. However, at the center of the shell boundaries the in-

fluence of the stiffeners is not as pronounced and more bending occurs. This results in
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the outer layer carr3'ing more load at these locations which produces larger compressive

stresses,

The in-plane stress results, _,x, for a combined loading on a [0/90/0"1 lx12 geodesically

stiffened shell are shown in Figures 61 and 62. The addition of I0 psi internal pressure

to the geodesically stiffened shell produces significant changes in the stress distribution,

a%x, in the inner layer shown in Figure 61 when compared with the inner layer for

compressive loading shown in Figure 59. As the internal pressure is increased these

differences between pure compression and combined loading will become much larger.

The pressure produces a much wider variation of the in-plane stresses and also changes

the peak stresses at the edges and the stiffener intersection. The in-plane stress at the

stiffener intersection for the inner layer subjected to combined loading is reduced by 52%

from the inner layer stress generated from compressive loading. Figure 62 shows the

stress distribution, a-_, for the outer layer for the base line design. The boundaries at x

= 0, Lx are fairly stiff having v = w = 0 boundary conditions at these locations and

thus the addition of internal pressure results in large compressive bending stresses at the

x boundaries. Away from the boundaries the pressure tends to reduce the compressive

stresses by as much as 84% at the stiffener interior. Thus, adding pressure has a signif-

icant influence on the in-plane stresses of the shell laminate,

A plot of the shear stress, _, in the inner layer for the base line design subjected to

combined loading is shown in Figure 63. The shear stresses, _, yield a skew-symmetric

nature with the value of the shear stress being 0 at the stiffener intersection. The results

for the application of" compressive loading yield the same general shape as the results for

combined loading, but the values of the stresses are about a factor of 10 smaller. Those

results are not included here.
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Figure 59. Surface plot or;,, for the inner layer or • [019010] Ix12 |eodeslc•lly stiffened shell under
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Figure 61. Surfn_ plot of _,, for the inner Ixyc_ of • [019010] lxl2 |eodesicilly stiffened shell under
combined Ionding.
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5.5.2 Interlaminar Normal Stress Study

The distribution of the interlaminar normal stress, _**, over the shell region for the outer

layer of the base line design subjected to an applied compressive end load is shown in

Figure 64. As can be seen, the interlaminar normal stresses peak at the x boundaries

Ly
and also at the stiffener intersection. Along the center line y -- _ away from the

boundaries the interlaminar normal stresses are larger than those stresses over the re-

mainder of the shell away from the surface. This indicates that the stiffener intersection

Ly

has an influence on the interlaminar normal stresses along the line y -- --_--. This could

be due to the fact that the transverse displacements do peak at the stiffener intersection.

Adding internal pressure to the preexisting compressive load yields an interlaminar

normal stress distribution in the outer layer as described in Figure 65. Here the

interlaminar normal stresses are significantly greater than for the case of end com-

pression. The general pattern of the stress distribution is the same as that for

compressive end loading only. The interlaminar normal stresses peak at the stiffener

Ly
intersection and the interlaminar normal stresses being largest along the line y -- --_.-.

Pressure does have a significant influence on the interlaminar normal stresses by in-

creasing the interlaminar normal stresses by almost a factor of 4.

Nondimensional interlaminar normal stresses near the stiffener intersection through the

thickness of the shell laminate for various geometries and loadings are presented in this

section. The interlaminar normal stresses generated via combined loading are 400%

larger than the interlaminar normal stresses generated from compressive loading and

thus only combined loading conditions are studied in this section. Figure 66 is a plot

of the interlaminar normal stresses, _**, near the stiffener intersection for lx12

geodesically stiffened shells having 1.0" internal orthotropic stiffeners for various shell
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laminates subjected to combined loading. Figure 66 shows that the laminate stacking

sequence has a large impact on the interlaminar normal stress. The

[60/- 60/0/- 60/60] and the [-45/45/90/02s layups show the largest interlaminar

normal stresses. For example, the maximum nondimensionai interlaminar normal

stresses in the [60/- 60/0/- 60/60] layup is 66% larger than the maximum nondimen-

sional interlaminar normal stress in the [45/90/0]s. The order of decreasing maximum

nondimensional interlaminar normal stress stresses in the laminates are

[30/- 30/0/- 30/30], [ -45/45/90/0]s, [45/- 45/45/- ,o,53, [60/- 60/0/- 60/60],

[0/90/0], and [45/90/0]s. Hence, laminates such as the [45/90/0]s, [0/90/0], and

[60/- 60/0/- 60/60] are preferable for use in keeping the _,, stresses from becoming

significantly large.

The effects of conducting a geometrically nonlinear analysis on the stresses, _,,, for a

combined loading is shown in Figure 67. The nondimensional interlaminar normal

stresses for the geometrically nonlinear analysis are 47.1% less than the stresses devel-

oped from the linear analysis. From the displacement field study shown in Figure 54b

the nonlinear analysis generates smaller displacements than the linear analysis and ob-

viously this results in lower strains and then subsequently lower stresses. Thus, when

pressure loading is included on the structure a geometrically nonlinear analysis will yield

significantly different nondimensional interlaminar normal stresses. The geometrically

nonlinear analysis softens the structure and this reduces the displacements and subse-

quent stresses.

The effect of increasing the stiffener height on the nondimensional interlaminar normal

stress for combined loading is shown in Figure 68. The nondimensional interlaminar

normal stresses show a uniform decrease as the stiffener height is increased. The maxi-
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mum differences in _,z between the 1" and 2", 3", 4", and 5" stiffeners are 6.6%, 18.4%,

27.9%, and 37.5% respectively. The interlaminar normal stress decreases as the stiffener

height increases as expected because the bending stiffness of the stiffeners increases as

a function of the cube of the stiffener height. This increase in bending stiffness tends to

decrease the transverse displacements and consequently the interlaminar normal stress.

It is interesting to note that the height of the stiffener does not affect the overall shape

of the stress through the thickness.

The effect of changing the cell geometry on the nondimensional interlaminar normal

stress for [0/90/0] geodesically stiffened shells subiected to combined loading is shown

in Figure 69. Geodesic cell geometries of lxlO, lxl2, lxl4, and lx16 are considered in

this analysis. As can be seen from Figure 69 and the displacement results shown in

Figure 51, increasing the number of cells around the circumference causes the shells to

become significantly stiffer because the number of stiffeners in the structure is increased.

This lowers both the transverse displacements and the interlaminar normal stresses. For

example, as the cell geometry is increased from lxlO to lx12, lxl4, and lx16 the non-

dimensional interlaminar normal stresses are reduced 35%, 51%, and 8.5% respectively.

Shown in Figure 70 are the nondimensional interlaminar normal stress results for in-

creasing the shell radius for [0/90/0] shells subjected to combined loading. The shell

radii considered here are 85", 170", 25.5". The maximum difference in nondimensional

interlaminar normal stress is ,56% when increasing the shell radius 2 times from 85" to

170" and the difference is 88% when increasing the shell radius 3 times from 85" to 255".

As can be seen there are differences in the nondimensional interlaminar normal stress

distribution. From the results shown in Figure 70 and the transverse displacement re-

sults of Figure 5,5b it is observed that as the shell radius is increased the influence of the
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stiffener on the displacement and interlaminar normal stress fields increases. This is es-

pecially evident when pressure is applied to the shell structure. Moreover, as the shell

and stiffener radius are increased and the shell thickness remains constant, the ratio of

the stiffener stiffness to the shell stiffness increases and the stiffeners' influence on the

response of the shell is increased.

The nondimensional interlaminar normal stresses for [0/90/0] l xl 2 geodesically stiffened

shells subjected to combined loading for variations in the shell laminate thickness are

shown in Figure 71. As expected, changes in shell thickness have a direct effect upon

the interlaminar normal stresses. The nondimensionalized interlaminar stresses are a

strong function of the shell laminate thickness. The maximum differences in nondimen-

sional interlaminar normal stresses between the 0.15" and the 0.30", 0.45", and 0.60"

laminates are 78%, 89%, and 9"/% respectively. The bending stiffness of the shell is a

function of the laminate thickness cubed. The smaller the laminate thickness the more

the shell will deflect under pressure loading resulting in larger stresses.

The nondimensional interlaminar normal stresses for a lx12 geodesically stiffened shell,

lx12 axial/ring stiffened shell, and an unstiffened shell are shown in Figure 72. The re-

sults presented here are for [0/90/0] shells with 1.0" internal orthotropic stiffeners sub-

jected to combined loading. As can be seen the nondimensional interlaminar normal

stresses generated in the geodesically stiffened shell is 67.8% larger than those generated

in the axial/ring stiffened shell and 81.7% larger than those generated from the unstiff.

ened shell. From Figures 56b and 72 it becomes apparent that the geodesic stiffeners

tend to push the stiffener intersection outward which results in larger transverse dis-

placements and stresses near the stiffener intersection than those generated by the

axial/ring stiffened shell system or the unstiffened shells. Apparently, the geodesic
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stilTeners at the stiffener intersection are constrained so that the u and v displacements

at that location are 0 because of symmetry and symmetric loading and boundary condi-

tions. However, because of this constraint the stiffeners do exhibit large displacements

in the transverse direction due to the compliance of the stiffener intersection. In addi-

tion, the distribution of the interlaminar normal stresses for the axial/ring stiffened shell

and the geodesically stiffened shell are different. While both stiffened shells exhibit peak

stresses in the bottom (inner) layers of the laminate where the stiffeners are attached, the

axial/ring stiffened shell does not exhibit another peak in the interlaminar normal stress

in the top (outer) layers as does the geodesically stiffened shells. Therefore, it can be

concluded that because the geodesically stiffened shells produce significantly more dis-

placements at the stiffener intersection than the axial/ring stiffened results as seen in

Figure S6b this results in larger interlaminar normal stresses through the entire shell

laminate for the geodesically stiffened shells. The axial/ring stiffened shells are very stiff

at the stiffener intersection which results in smaller displacements at the stiffener inter-

section than away from the intersection (see Figure $6b). Therefore, the influence of the

axial/ring stiffened structure is to cause peak interlaminar normal stresses in the inner

layers of the shell, but because the transverse displacements away from the stiffener

intersection are larger than at the stiffener joint the influence of the axial/ring stiffeners

does not extend to the outer layers of the shell.

The interlaminar normal stresses are influenced by the laminate stacking sequence, ge-

ometric nonlinearity, stiffener height, cell geometry, shell radius, shell laminate thickness,

and the type of shell structure (geodesic or axial/ring stiffened). The shape and magni-

tude of the nondimensional interlaminar normal stress is definitely influenced by the

laminated stacking sequence. Changing the shell geometry, shell laminate thickness, shell

radius, and conducting a geometrically nonlinear analysis all have an impact in the
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structural response and the interlaminar normal stresses. Comparing a l xl2 geodesically

stiffened shell, lx12 axial/ring stiffened shell, and an unstiffened shell shows that the

interlaminar normal stresses generated in a geodesically stiffened shell are much larger

than those generated in other types of shells. However, the interlaminar normal stresses

are still an order of magnitude less than the in-plane stresses. The addition of internal

pressure increases the interlaminar normal stresses and therefore large increases in pres-

sure may cause the interlaminar normal stresses to contribute to the failure of the

geodesically stiffened shells.

5.5.3 Interlaminar Shear Stress Study

The interlaminar shear stresses, _**, are the interlaminar shear stresses having the largest

magnitudes for geodesically stiffened shells and will be studied in this work. The

interlaminar shear stress distribution, o='**,for the outer layer base line design subjected

to a compressive loading is shown in Figure 73. The interlaminar shear stress surface

plot yields a skew-symmetric stress distribution. The shear stress do not peak at the

stiffener intersection, but rather peak about 3.5" from the stiffener intersection. The

interlaminar shear stress, _"**,over the shell for a combined applied compressive load and

an internal pressure of 10 psi is shown in Figure 74. This reveals that the interlaminar

shear stresses yield similar type of behavior and peak at the same location as shown in

Figure 73. The difference in nondimensional interlaminar shear stress between the

compressive and combined loading is only 28.6%. Thus, a large porti • of the

interlaminar shear stresses, er_,, are generated by the compressive rather tha e pres-

sure loads. The combined loading case does produce larger nondimensional interlaminar

shear stresses by 40% at the x boundaries, x = O, L.. Combined loading will be used
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to study the interlaminar shear stresses in order to be consistent with the interlaminar

normal stress analyses.

Shown in Figure 7.5 are the nondimensional interlaminar shear stresses, _,,, at the lo-

cation of the peak stresses as indicated from the surface plots of Figures 73 and 74 for

various shell laminates. The nondimensional interlaminar shear stresses for the

geodesically stiffened shells shown in Figure 75 are developed via combined loading.

Clearly due to the influence of the stiffeners and the stacking sequence there is no dis-

tinct pattern for the shear stresses a,t. The [30/- 30/0/- 30/30"], [0/90/0], and the

[45/- 45/45/-45] laminates yield the maximum values of the stresses _,,. The

[45/90/0]s laminated stiffened shell yields the smallest nondimensional interlaminar

shear stresses. The difference in the nondimensional shear stresses between the

[30/- 30/0/- 30/30] shell and the [45/90/0]s shell is 84.5%. Obviously the shell lami-

nate has a definite influence on the interlaminar shear stresses. Laminates such as the

[ -45/45/90/0]s, [45/90/0]s, and [60/- 60/0/- 60/60] are preferable for use in keeping

the _, stresses from becoming significantly large.

In Figure 76, the interlaminar shear stresses, (7_,, are compared for a linear and a ge-

ometrically nonlinear analysis subjected to combined loading of the base line design.

The results show that the nondimensional interlaminar shear stresses produced from the

linear analysis are 80% larger than those generated from the geometrically nonlinear

analysis. It is clear that a nonlinear analysis does tend to soften the structure, especially

when pressure is applied, thus reducing the resulting displacements, strains, and stresses.

Next, the effect of changing the cell geometry upon the nondimensional interlaminar

shear stresses for a [0/90]0] laminated shell subjected to combined loading is shown in

Figure 77. The results presented here are for lxl0, lx12, lx14, and lx16 geodesically

Results 217



0.012

0.004

.4= n.'

Sz"

0.000

II

N

0OO4

O0O8o

-O.Olt
100

8O
111

inches
0 0

Filure "/3. Surface plot or;'. for the outer layer of"• [019010] Ix12 leodes;ctlly stlfl"enedshell under
compre4_si_e loading.

Results
218



0.15

0.10

0 0

Figure 74. Surface plot of _'n for the outer layer of a (01q0/0] l xl 2 |eodesically stiffened shell under
combined Ioadinl|.

Resulu 219



N

0.50

0.30

0.10

-0.I0

-0.30

--------G1x12, 0/90/0, R=85", h=0.30", p==10 DSl, ael=O.01"

........ G1x12, (45/90/0)s, R=_5", h=O.30°, pi=10 Dsi, Oel=0.01'

_ Glx12, 30/-30/0/-30/30, R=85", h=0.30", pn=10 psi, det=O.01'

.... Glx12, 45/45/45/45, Rzd]5", h=0.30", pD=10 psi.0et=0.01"

.... Glx12, (-45/45/90/0)$, R=85", 1_=0.30", pi=10 psi. del=0.01"

- Glx12. 60/-60/0/60/-60, R=85 °, h=0.30", pJ=10 Dsi, ¢1e1=0.01"

i)" . "".:.," ..._/', , ,'
..-"i_ (/ ; ,-
:1 "_/ oI
•k -I ,"

k.
L

t

F

i ...'"; "

• - J

-0.50

-0.005 0.000 0.005 0.010 0.015 0.020 0.025

t_XZ

r

i
0.030

Fillure "/S. Throulih-the-thlckness distribution of ;',= for Glxl2 shell at the critical reliiOn for various
shell laminates under combined Ioudinli.

Result= 220



N

Glx12, 0/90/0, R=85", ha0.30", SH=I.0", pi=10 psi, ¢1e1=0.01"

........ Glx12, 0/90/0, R=85", ha0.30", SH=I.0", pi=10 psi. del=0.01" (nonlinear)

0.S0

o.lo _- !

-0.10 ;

= - \ii -.

0.30 _- ..,.).:

-0.50 I,-"" , , ] , ,

0.000 0.005 0.010 0.015

I

"I

0.020

Fi|ure 76. ThrouEh-(he-¢hicknessdiseribmionor ;,= ror ('; I x12 shell st the ¢ritic=l relKionfar linear and
Icometrically nonlinearanalyses undercombinedIoudin|.

Results 221



stiH'ened shell models. Obviously as the number of cells around the circumference from

I×I0 to Ixl6 the shell becomes stiffer and thus lower interlaminar stresses result. The

resulting differences in the maximum nondimensional interlaminar shear stresses be-

tween the Ixl0 and IxI2, Ixl4, and Ixl6 models are S7% , 86%, and 93% respectively.

Changing the shell laminate thickness for the base line design under combined loading

has a definite impact on the interlaminar stresses _x, as shown in Figure 78. The results

presented in Figure "/8 are for 0.15", 0.30", 0.45", and 0.60" shell laminate thicknesses.

The nondimensional shear stress results for the O.IS" laminate shell thickness are 87%

greater than those for the 0.30" laminate, 96.2% greater than those for the 0.45" lami-

nate, and 98.2% greater than those for the 0.60" laminate. The bending stiffness of the

shell is a function of the laminate thickness cubed. Under pressure loading the smaller

laminate thicknesses will definitely deflect more and therefore larger interlaminar shear

stresses are developed.

In Figure 79 the effects of increasing the shell radius on the nondimensional interlaminar

shear stress _z under combined loading is described. Shell radii of 85", 170", and 255"

are considered in this analysis. The shell laminate thickness remains a constant 0.30".

The results presented in Figure 79 clearly show that increasing the shell radius while

holding the shell laminate thickness constant definitely has an impact on the

interlaminar shear stresses. The addition of internal pressure is the loading which brings

out the large variation in the interlaminar shear stress _=,. As discussed in Section 5.4

concerning Figure SSb, increasing the shell radius while holding the laminate thickness

constant increases the ratio of the stiffener stiffness to the shell stiffness to resist pressure

loading. Thus, near the stiffener intersection for the 255" shell the geodesic stiffeners

have a large influence on the displacement field when pressure is applied and therefore
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larger shear stresses result in the bottom laminate layers near the stiffener intersection.

In fact, the shear stresses change sign through the laminate thickness for the 255" shell.

There appears to be a balance between the increased stiffness created when increasing

the shell radius and the increased loading generated via internal pressure by increasing

the shell radius. Thus, when the shell radius is increased from 85" to 170" the effect of

the increased stiffness is not overcome by the increased loading from the internal pres-

sure and thus the interlaminar stresses decrease, However, when the shell radius is in-

creased from 85" to 255" the increase in loading from internal pressure exceeds the

increase in shell stiffness and thus the interlaminar shear stresses exhibit a large variation

through the laminate thickness.

The last interlaminar shear stress analysis considered here involves lx12 geodesically

stiffened shell, lxl2 axial/ring stiffened shell, and an unstiffened shell as shown in Figure

80. The results presented here are for [0/90/0] shells with 1.0" internal orthotropic shells

under combined loading. The results shown in Figure 80 clearly show that the influence

of the stiffeners on the interlaminar shear stresses when compared with an analysis of

an unstiffened shell. The maximum difference between the geodesically stiffened shell

and the unstiffened shell is 93.3% while the maximum difference between the axial/ring

stiffened shell and the unstiffened shell is 95.5%. Also, the distribution of the

interlaminar shear stresses for the axial/ring stiffened shell and the geodesically stiffened

shell are different. While both stiffened shells exhibit peak stresses in the bottom (inner)

layers of the laminate where the stiffeners are attached, the axial/ring stiffened shell does

not exhibit another peak in the interlaminar shear stress in the top (outer) layers as does

the geodesically stiffened shells. Therefore, it can be concluded that because the

geodesically stiffened shells produce significantly more displacements at the stiffener

intersection than the axial/ring stiffened results as seen in Figure 56b this results in larger
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interlaminar stiear stresses through the entire shell laminate for the geodesically stiffened

shells. The axial/ring stiffened shells are very stiff at the stiffener intersection which re-

sults in smaller displacements at the stiffener intersection than away from the inter-

section (see Figure, 56b). Therefore, the influence of the axial/ring stiffened structure is

to cause peak interlaminar shear stresses in the inner layers of the shell, but because the

transverse displacements away from the stiffener intersection are larger than at the

stiffener joint the influence of the axial/ring stiffeners does not extend to the outer layers

of the shell.

The impact of laminate stacking sequence, geometric nonlinearity, cell geometry, shell

laminate thickness, shell radius, and shell type (unstiffened, axial/ring stiffened, or

geodesically stiffened) all influence the interlaminar shear stress. Changing any or many

of these parameters will result in significant changes in the interlaminar shear stresses.

However, these shear stresses are in many cases 2 orders of magnitude less than the in-

plane stresses and these shear stresses' impact on the structural integrity is debatable.

5.6 First-Ply Failure Analysis

The purpose of this study is to determine the primary failure trends for geodesically

stiffened shells. This work is not intended to be a detailed failure study similar to the

research presented by Reddy and Pandey [159], but rather it should be viewed as a pre-

liminary study of the failure of geodesically stiffened shells. The laminate strength values

used in this analysis are given in Table 7. The Tsai-Wu failure criterion discussed in

section 2.6 will be used to determine shell laminate material failure. Shown in Table 27

are a comparison of the results for linear material failure and buckling of [0/90/0] lx12
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geodesically stiffened shells with 1.0" internal orthotropic stiffeners. Three shell laminate

thicknesses, 0.15", 0.30", and 1.5", were considered in this analysis. Results were ob-

tained for pure compression and for shells subjected to combined loading with internal

pressures of 10 psi and 25 psi. The end displacements were increased incrementally until

failure occurred. The end loads, Nx, were calculated at first-ply failure. The results of

Table 27 clearly show that for pure compression and combined loading with small to

moderate internal pressures the shell will buckle before material failure occurs. It is also

evident that as the pressure is increased from 0 psi to 25 psi the difference between the

failure and buckling loads decreases rapidly. The buckling load increases as the pressure

is increased due to the biaxial loading. Because the unit load in the circumferential

A

(hoop) direction, Ny, is tensile when internal pressure is included, the buckling load, Nx,

increases due to this biaxial loading condition. The failure load decreases as the pressure

is increased and thus it is concluded that for larger pressures material failure will occur.

The next study shown in Table 28 is for the analysis of ['0/90/0] unstiffened shells,

[0/90/0] lx12 geodesically stiffened shells, and E45/90/O]s lx12 geodesically stiffened

shells. A constant shell thickness or0.30" is used. For these analyses the end displace-

ment is held constant and the internal pressure is increased until material failure occurs.

Applied end displacements of 0.0", 0.10", and 0.25" were used as the constant end dis-

placements. As can be seen material failure occurs at high pressures, (160 psi - 225 psi),

and this depends upon the shell type and the applied displacements. The failure or the

geodesically stiffened shells occurs at higher pressures than for the unstiffened shells

primarily because of the stress concentrations at the stiffener intersection. As discussed

in sections 5.2, 5.4, and 5.5 the maximum displacements, in-plane stresses, and

interlaminar stresses occur at the stiffener intersection. Shown in Figure 81 is the finite

element model and the location of first-ply failure marked with a circled X. The corners
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of the shell and the stiffener intersection are the locations of first-ply failure for the

geodesically stiffened shells as expected. However, some of the peak stresses at the

corners may be artificially induced by the boundary conditions. The location of the

first-ply failure depends upon the laminate layup and the applied end displacements.

The [0/90/0] shells tend to fail at the stiffener intersection first and the [45/90/0]s shells

tend to fail at the shell corners first. The differences in the failure pressures between the

unstiffened and geodesically stiffened shells range from a minimum for 4.4% for the

[0/90/0] geodesically stiffened shell with 0.6" end displacements to a maximum of 15.6%

for the [45/90/0]s geodesically stiffened shell with 0.0" end displacements. The maxi-

mum difference in failure pressures between the 1"0/90/0] and the [45/90/0]s geodesically

stiffened shells occurs for applied end displacements of Off'. The failure pressures of the

geodesically stiffened shells are the same for applied end displacements of 0.25". In all

cases there is a large variation in the applied end load. It can be concluded that material

failure of geodesically stiffened shells will occur for large internal pressures in the vicinity

of the stiffener intersection or the corners of the shell section.
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Chapter 6

Conclusions and Recommendations

6.1 Summary and Conclusions

The purpose of this research was to analyze geodesically stiffened shells using a layerwise

approach. The literature review, theoretical developments, verifications of the analytical

method and computer codes, and the analysis of the stiffened shells were all vital to the

completion of this research. A summary of the major accomplishments of this work

follow:

Extensive literature review including shell theories, buckling of stiffened shells, finite

element analysis of stiffened shells, failure theories, and calculation of intcrlaminar

stresses.

i) Theoretical and computational development of a layerwis¢ discrete Ritz buckling

procedure.
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• Buckling analysis of geodesic, axial, and ring stiffened shells with smeared and finite

element comparisons.

Theoretical and computational development and subsequent verification of the

layerwise shell and stiffener finite elements with applications to geodesically stiffened

shells and interlaminar stresses.

The literature review provided the groundwork for this research and any subsequent

work which naturally follows from this research. All of the analytical developments were

derived because of a lack of study or knowledge about a particular area or because of

an interest in expanding the database about a certain topic.

The layerwise discrete Ritz analytical buckling procedure was developed to prove the

validity of the layerwise theory for use in the analysis of geodesically stiffened composite

shells. Attachment of the discrete stiffeners was implemented by using the Lagrange

multiplier technique. The layerwise analytical buckling results compare well with the

smeared buckling results and the Testbed finite element results. The layerwise discrete

analytical method yielded more conservative buckling results than the smeared results

and the differences in results ranged from 0% to 70*/,. This is reasonable because dis-

crete methods should yield more conservative buckling results than the smeared ap-

proaches. A comparison of the Testbed finite element buckling results with the layerwise

discrete results shows that in general for quasi-isotropic and cross-ply laminates the

layerwise theory yields more conservative results. The difference between the LWTR

discrete method and the finite element method can be attributed to the fact that the

LWTR method neglects the out-of-plane and the torsional stiffnesses of the stiffeners.

The difference starts to become more pronounced as the stiffener heights increase. This

is due to the fact that as the stiffener height increases the effects of the out-of-plane and
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the torsional the stiffnesses on the global buckling results increase. The layerwise dis-

crete method may be employed for axial, ring, or geodesically stiffened shells. This

method is only directly applicable to specially orthotropic shells. Reasonable buckling

results should be expected. The layerwise discrete buckling method provides design en-

gineers with an optional tool in the design of stiffened shells based upon buckling. One

of the drawbacks of this method is that it is restricted to shells which have boundary.

conditions that are analytically tractable. Run times for this method can be extreme if

a sweep of the buckling modes must be made in order to determine the minimum

eigenvalue. Also, this method is only directly applicable to specially orthotropic shells

where Cl_ _ C26 _ C3_ _ C4s _ 0. However, this method has provided good results

for certain quasi-isotropic materials subjected to in-plane loads.

The layerwise finite element method for geodesicaUy stiffened shells was developed pri-

marily to study the displacement and stress fields in geodesically stiffened shells. Of

particular interest were the interlaminar stresses, Both the layerwise shell and beam el-

ements were developed for this research. The out-of-plane stiffness of the layerwise

beam elements was included by using the ratio of the out-of-plane moment of inertia to

the in-plane moment of inertia. Neglecting the out-of-plane beam stiffness has the

greatest impact when angle ply laminates are used in the shell or beams. For these cases

the finite element method does not yield good results unless the out-of-plane beam

stiffness is included. Developing the beam elements in a layerwise fashion permits the

beam element degrees of freedom to be assembled directly into the global stiffness ma-

trix. Thus, no additional constraint equations are necessary. The layerwise finite ele-

ment program was verified using 10 classical example problems. An additional

comparison of the layerwise finite element method with the Testbed finite element

method was conducted for geodesically stiffened shells and several shell lamination
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schemes. A good correlation of stress results exists between the layerwise analyses and

the Testbed analyses, less than 10%. The small differences occur at the stiffener inter-

section and are due to the different stiffener interaction responses measured by the two

analyses.

A study of the displacements and the stresses for various geodesically stiffened shells was

made using the layerwise finite element method. Varying the shell laminate layup, lam-

inate thickness, stiffener height, stiffener orientation angle, cell geometry, shell radii, and

shell length were all considered. All changes have an impact on the structural response,

some more than others. The displacement field is most affected by changing the shell

laminate layup and the cell geometry. Adding internal pressure to the shell has a major

influence on the displacement response when compared with pure compression. This is

most evident for the geometrically nonlinear case, when the shell radius is increased, and

when axial and ring stiffened shells are considered. When subjected to combined com-

pression and internal pressure the transverse displacements of the shell away from the

stiffener intersection do not exceed those at the stiffener intersection until deep stiffeners,

a large radius, or an axial/ring stiffened structure are used.

Interlaminar normal and shear stresses for geodesicaUy stiffened shells are only signif-

icant when internal pressure is added. The interlaminar normal stresses are influenced

by the laminate layup, geometric nonlinearity, stiffener height, cell geometry, shell ra-

dius, shell laminate thickness, and the type of shell structure. The shape and magnitude

of interlaminar normal stress distribution through the thickness is influenced most by the

laminate layup, shell laminate thickness, and shell type (unstiffened, axial and ring stiff-

ened, or geodesically stiffened). However, the interlaminar normal stresses are an order

of magnitude less than the in-plane compressive stresses. The interlaminar shear streses
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are grcatly influenced by tile laminate layup, shell laminate thickness, and shell type.

The interlaminar shear stresses are often two orders of magnitude less than the in-plane

stresses. The influence of the interlaminar stresses on the structural integrity of stiffened

shells is small for pure compression and combined loading when the internal pressure is

small.

The failure analysis reveals that unless internal pressure is applied the geodesically stiff-

ened shells will buckle before they experience material failure. Increasing the internal

pressure can create a failure scenario. For large internal pressures failure of geodesically

stiffened shells initiates at the stiffener intersection where the largest displacements and

stresses occur.

The layerwise finite element method provides a useful analytical tool to study the struc-

tural response of geodesically stiffened shells. The layerwise method eliminates the finite

element aspect ratio problem of traditional 3-D finite elements. Also, the layerwise finite

element code was written so that a preprocessor is not needed to generate a large model

and thus it is easier to change variables such as the shell radius, shell length, cell geom-

etry, and stiffener height than for the Testbed models. However, for large problems the

size of the bandwidth can hamper the solution by causing excessive run times and not

converging to the correct solution.

6.2 Recommendations

The recommendations include expanding the existing analytical tools and augmenting

the analyses. The layerwise Ritz method should be expanded to include calculation of

the displacements, strains, and stresses for simply supported cylindrical shells. Including
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the out-of-plane and torsional stiffnesses of the stiffeners used in the Ritz method can

also be included in the Future. Employment of layerwise beam elements in the Ritz

method may also be useful. Also, perhaps the layerwise discrete approach could be ex-

tended to other tractable boundary conditions and linear vibration analyses. Develop-

ment of robust postprocessors for both the analytical and finite element codes will

provide the user with plots of the deformed shapes, eigenvectors, and stress contours.

Including the torsional stiiTnesses of the layerwise beam elements by assuming a dis-

placement distribution through the thickness of the beam could improve finite element

method. Improvement and/or additional finite element equation solvers could help cir-

cumvent the bandwidth problems for large models. Parallel processing is an option to

consider for very large finite element problems.

A comparison of analytical data with any experimental data will provide useful infor-

mation into the layerwise analyses' strengths and deficiencies. For example, work by

Boitnott, Johnson, and Starnes [144] included a nonlinear failure analysis of pressurized

composite panels. The work in Ref. [144] compared experimental failure results with

analytical failure results. The analytical analyses were conducted in order to simulate

the actual experimental conditions. The analyses utilized the measured radius,

circumferential slip, and axial strain for each experimental specimen to model the re-

sponse as accurately as possible. The failure analyses of the curved panels described in

Ref. [1441 could also be accomplished using a layerwise finite element model, but it will

involve a great deal of work and therefore will be left for future study. A study of

geodesically stiffened shells subjected to high pressures may provide interesting

interlaminar stresses. Additional analyses that incorporate geometric nonlinearity

should be considered. Also, a study of a variety of laminate layups as a function of

various shell and stiffener parameters may provide some unique results and a good da-
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tabase, Additional failure theories and post-ply failure could easily be implemented and

studied. Tlle aforementioned recommendations coupled with the work accomplished in

this research should provide several additional research projects.
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Stiffness Terms
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C.1 Layerwise Shell Element Direct Stiffness Terms
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C.2 Layerwise Shell Element Tangent Stiffness Terms
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/.J

( O_ m OWj )[ , r_lJkl _ n Ow l | r_ljkl 0_1 n Ow I

+ T'_:6\ a_ ay +ay a_
/.J

+ ax a.v + @ ax _ +

! c_w.I ¢3wl 1 nUki awl c_wl

,.,v,.(o.,, ow, owjo.,_7
+ T"6_\ a._ 0£ + O.v ox )J
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C.3 Layerwise Beam Element Direct Stiffness Terms
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C.4 Layerwise Beam Element Tangent Stiffness Terms

S-ran T s

= [Ai_l ]

$ S

1 _ Owl O_O" I O_" Ow/}+ Ts_' _ g g +T _''N" N _ ,_,7
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C.5 Computation of Higher Order Derivatives

The computation of the second and higher order derivatives of the interpolation func-

tions with respect to the global coordinates involves additional computations.

The first order derivatives with respect to the global coordinates are related to those with

respect to the local (or element) coordinates according to

IT;x

Ox Oy
Ox Oy

I _ l_J_l_l J_"_ 'I 0¢/
(C.5.1)

where the Jacobian matrix [J] is evaluated using the approximation of the geometry:

X s

},

)=I

J=,l

(C.5.2)

where 6/are the interpolation functions used for the geometry and (_,)/) are the element

natural coordinates. For the isoparametric formulation r = NDS and $t = $J. The

second order derivatives of ¢J"with respect to the global coordinates (x, y) are given by
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_,2

a2_.

12./2-]
ox 1 (c.5.3)

where

[J1] =

cgx 2 ay 2

ax 2 _y .2

ax ax _y _y

ay ax
2

a_ a_

ax ay
2

a_ a_

ax ay ay ax
+

a_ a_ a. a_

(c.5.4)

[y:] =

a2x a2y

a_2 a_2

a2x a2y

_2 a2

a2x a2y
a4a. a4a_

(c.5.5)

The matrices [ Jl ] and [ ,/2 ] are computed using Eq. (C.5.2).
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